
p4-mapreduce

EECS 485 Project 4: MapReduce
Due 11:59pm ET March 30th, 2025. This is a group project to be completed in groups of two to
three.

Change log

Initial Release for W25

Introduction

Implement a MapReduce framework in Python inspired by Google’s original MapReduce paper. The
framework executes MapReduce programs with distributed processing on a cluster of computers
like AWS EMR, Google Dataproc, or Microsoft MapReduce.

The learning goals of this project include MapReduce program execution, basic distributed systems,
fault tolerance, OS-provided concurrency facilities (threads and processes), and networking
(sockets).

The MapReduce framework consists of two major pieces of code. A Manager listens for user-
submitted MapReduce jobs and distributes the work among Workers. Multiple Worker instances
receive instructions from the Manager and execute map and reduce tasks that combine to form a
MapReduce program.

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 1/41

https://eecs485staff.github.io/p4-mapreduce/
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://aws.amazon.com/emr/
https://cloud.google.com/dataproc/
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-introduction#what-is-mapreduce

The execution of a MapReduce program with two inputs and two Workers looks like this.

Here’s an example of a tiny MapReduce job running on a completed MapReduce framework. First,
take a look at the input files.

Start a Manager and two Workers, then submit a Word Count job.

Take a look at the output. We can see that the word hello appears 3 times among all the input
files.

1

2

3

4

5

6

7

8

$ head tests/testdata/input_small/file*
==> tests/testdata/input_small/file01 <==
hello world

hello eecs485

==> tests/testdata/input_small/file02 <==
goodbye autograder

hello autograder

1

2

3

4

5

6

7

8

9

$ mapreduce-manager

$ mapreduce-worker --port 6001

$ mapreduce-worker --port 6002

$ mapreduce-submit --input tests/testdata/input_small

Submitted job to Manager localhost:6000

input directory tests/testdata/input_small

output directory output

mapper executable tests/testdata/exec/wc_map.sh

reducer executable tests/testdata/exec/wc_reduce.sh

1 $ head output/part-*

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 2/41

Before you begin, check out the threads and sockets tutorial for background and examples.

GAI help bot

We are providing a generative AI help bot, Webby, trained on the Project 4 spec, tutorials, and
EECS 485 course material. We hope that it will be helpful, but the bot is experimental and it may
provide inaccurate or incomplete information. This project spec is the final authority.

Access Webby here.

Setup

If your group has already followed the setup tutorials, you can skip to Fresh install.

Group registration

Register your group on the Autograder (see Submitting and grading).

Project folder

Create a folder for this project. Your folder location might be different.

2

3

4

5

6

7

8

9

==> output/part-00000 <==
hello 3

==> output/part-00001 <==
autograder 2

eecs485 1

goodbye 1

world 1

1

2

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

 Pitfall: Avoid paths that contain spaces. Spaces cause problems with some command line
tools.

Bad Example Good Example

EECS 485/Project 4 MapReduce eecs485/p4-mapreduce

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 3/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/threads-sockets.html
https://umgpt.umich.edu/maizey/webby
https://autograder.io/

Version control

Set up version control using the Version control tutorial. You might also take a second look at the
Version control for a team tutorial.

After you’re done, you should have a local repository with a “clean” status and your local repository
should be connected to a remote GitHub repository.

You should have a .gitignore file (instructions).

Starter files

Download and unpack the starter files. Only one group member needs to download and unpack the
starter files and the rest of the group can clone the repository.

 WSL Pitfall: Avoid project directories starting with /mnt/c/ . This shared directory is slow.

Bad Example Good Example

/mnt/c/ ... /home/awdeorio/ ...

1

2

3

4

5

6

7

8

9

10

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

$ git status

On branch main

Your branch is up-to-date with 'origin/main'.

nothing to commit, working tree clean

$ git remote -v

origin git@github.com:awdeorio/p4-mapreduce.git (fetch)

origin git@github.com:awdeorio/p4-mapreduce.git (push)

1

2

3

4

5

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

$ head .gitignore

This is a sample .gitignore file that's useful for EECS 485 projects.

...

1

2

3

4

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

$ wget https://eecs485staff.github.io/p4-mapreduce/starter_files.tar.gz

$ tar -xvzf starter_files.tar.gz

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 4/41

https://eecs485staff.github.io/p1-insta485-static/setup_git.html
https://eecs485staff.github.io/p1-insta485-static/setup_git.html#version-control-for-a-team
https://eecs485staff.github.io/p1-insta485-static/setup_git.html#add-a-gitignore-file

Move the starter files to your project directory and remove the original starter_files/ directory
and tarball.

You should see these files.

1

2

3

4

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

$ mv starter_files/* .
$ rm -rf starter_files starter_files.tar.gz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

$ tree

.

├── mapreduce

│ ├── __init__.py

│ ├── manager

│ │ ├── __init__.py

│ │ └── __main__.py

│ ├── submit.py

│ ├── utils

│ │ └── __init__.py

│ │ └── ordered_dict.py

│ └── worker

│ ├── __init__.py

│ └── __main__.py

├── requirements.txt

├── pyproject.toml

├── tests

│ ├── testdata

| │ ├── correct

| │ │ ├── grep_correct.txt

| │ │ └── word_count_correct.txt

| │ ├── exec

| │ │ ├── grep_map.py

| │ │ ├── grep_reduce.py

| │ │ ├── wc_map.sh

| │ │ ├── wc_map_slow.sh

| │ │ ├── wc_reduce.sh

| │ │ └── wc_reduce_slow.sh

| │ ├── input

| │ │ ├── file01

 ...

| │ │ └── file08

| │ ├── input_small

| │ │ ├── file01

| │ │ └── file02

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 5/41

Activate the virtual environment and install packages.

Here’s a brief description of each of the starter files.

mapreduce MapReduce Python package skeleton files

mapreduce/manager/ MapReduce Manager skeleton module, implement this

mapreduce/worker/ MapReduce Worker skeleton module, implement this

mapreduce/submit.py Provided code to submit a new MapReduce job

mapreduce/utils/ Code shared between Manager and Worker

mapreduce/utils/ordered_dict.py A class for using a dictionary in multiple threads

requirements.txt Python package dependencies matching autograder

pyproject.toml MapReduce Python package configuration

tests/ Public unit tests

tests/testdata/exec/
Sample MapReduce programs, all use stdin and
stdout

tests/testdata/correct/ Sample MapReduce program correct output

tests/testdata/input/ Sample MapReduce program input

tests/testdata/input_small/ Sample MapReduce program input for fast testing

tests/testdata/input_large/
Sample MapReduce program input for testing on large
input

36

37

38

39

40

41

42

43

44

| | ├── input_large

| │ │ ├── file01

| │ │ ├── file02

| │ │ ├── file03

| │ │ └── file04

 ...

│ ├── test_worker_08.py

│ └── utils

1

2

3

$ source env/bin/activate

$ pip install -r requirements.txt

$ pip install -e .

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 6/41

testdata/ Files used by our public tests

Before making any changes to the clean starter files, it’s a good idea to make a commit to your Git
repository.

Python virtual environment

Each group member should create a Python virtual environment inside of the project directory using
the Project 1 Python Virtual Environment Tutorial.

Check that you have a Python virtual environment, and that it’s activated (remember source
env/bin/activate).

MapReduce program example

Next we will write a MapReduce word count program. You’ll use Michigan Hadoop (madoop), a light
weight MapReduce framework, to run your program. Madoop is similar to your project, but it’s
single-threaded and has fewer features.

First, install Madoop. Make sure your virtual environment is activated. Your version might be
different.

Write a word count mapper in tests/testdata/exec/wc_map.py . Create the file and add the
sample code below. Feel free to refer to the Hadoop Streaming in Python Map section for the
answer.

tests/testdata/exec/wc_map.py

1

2

3

4

5

6

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

$ ls -d env

env

$ echo $VIRTUAL_ENV

/Users/awdeorio/src/eecs485/p4-mapreduce/env

1

2

3

4

$ source env/bin/activate

$ pip install madoop

$ madoop --version

Madoop 1.0.1

1

2

3

4

#!/usr/bin/env python3

"""Word count mapper."""

import sys

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 7/41

https://eecs485staff.github.io/p1-insta485-static/setup_virtual_env.html
https://github.com/eecs485staff/madoop
https://github.com/eecs485staff/madoop/blob/main/README_Hadoop_Streaming.md#map

Write a word count reducer in tests/testdata/exec/wc_reduce.py . Create the file and add the
sample code below. Feel free to refer to the Hadoop Streaming in Python Reducer using groupby()
section for the answer.

tests/testdata/exec/wc_reduce.py

Make sure the executable bit is set.

5

6

7

8

for line in sys.stdin:
 words = line.split()
 assert False, "FIXME: for each word, print the word and a '1'"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#!/usr/bin/env python3

"""

Template reducer.

https://github.com/eecs485staff/madoop/blob/main/README_Hadoop_Streaming.md

"""

import sys
import itertools

def reduce_one_group(key, group):
 """Reduce one group."""

 assert False, "IMPLEMENT ME"

def keyfunc(line):
 """Return the key from a TAB-delimited key-value pair."""

 return line.partition("\t")[0]

def main():
 """Divide sorted lines into groups that share a key."""

 for key, group in itertools.groupby(sys.stdin, keyfunc):
 reduce_one_group(key, group)

if __name__ == "__main__":
 main()

1

2

$ chmod +x tests/testdata/exec/wc_map.py

$ chmod +x tests/testdata/exec/wc_reduce.py

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 8/41

https://github.com/eecs485staff/madoop/blob/main/README_Hadoop_Streaming.md#reducer-using-groupby
https://github.com/eecs485staff/madoop/blob/main/README_Hadoop_Streaming.md#reducer-using-groupby

Take a look at the provided small input.

Run your program using the provided small input.

See the output either in separate files or concatenated.

1

2

3

4

5

6

7

8

$ head tests/testdata/input_small/*
==> tests/testdata/input_small/file01 <==
hello world

hello eecs485

==> tests/testdata/input_small/file02 <==
goodbye autograder

hello autograder

1

2

3

4

5

6

7

8

9

10

11

$ madoop \

 -input tests/testdata/input_small \

 -output output \

 -mapper tests/testdata/exec/wc_map.py \

 -reducer tests/testdata/exec/wc_reduce.py

INFO: Starting map stage

INFO: Finished map executions: 2

INFO: Starting group stage

INFO: Starting reduce stage

INFO: Finished reduce executions: 3

INFO: Output directory: output

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

$ head output/part-0000*
==> output/part-00000 <==
eecs485 1

goodbye 1

==> output/part-00001 <==
hello 3

==> output/part-00002 <==
autograder 2

world 1

$ cat output/part-0000*
eecs485 1

goodbye 1

hello 3

autograder 2

world 1

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 9/41

Congratulations! You have successfully written a MapReduce program.

Fresh install

These instructions are useful if your group has already followed the setup tutorials.

Check out a fresh copy of the code and change directory.

Create a virtual environment, activate it, and install Python packages.

Run the MapReduce server

You will write a mapreduce Python package that includes manager and worker modules. Launch
a Manager with the command line entry point mapreduce-manager and a Worker with mapreduce-
worker . We’ve also provided mapreduce-submit to send a new job to the Manager.

We’ll explain how the MapReduce server works step-by-step in the following sections. We’ve also
provide a separate walk-through example with sample log output from our instructor solution.

Start a Manager and Workers

The starter code will run out of the box; it just won’t do anything. The Manager and the Worker run
as separate processes. First we start up a Manager which will listen and communicate with the
Worker on localhost TCP port 6000 and UDP port 6000. Then we start up two Workers in different
terminals, which will communicate with the Manager on port 6000. The first Worker will listen for
messages on localhost port 6001 and the second on port 6002.

Start a Manager and two Workers in separate terminals including debug output --loglevel=DEBUG .

1

2

$ git clone <your git URL here>

$ cd p4-mapreduce/

1

2

3

4

$ python3 -m venv env

$ source env/bin/activate

$ pip install -r requirements.txt

$ pip install -e .

1

2

3

$ mapreduce-manager --loglevel=DEBUG # Terminal 1
$ mapreduce-worker --port 6001 --loglevel=DEBUG # Terminal 2
$ mapreduce-worker --port 6002 --loglevel=DEBUG # Terminal 3

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 10/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html

Submit a MapReduce job

Use the provided mapreduce-submit command to send a new MapReduce job to the Manager.

Init script

The MapReduce server is an example of a service (or daemon), a program that runs in the
background. We’ll write an init script to start, stop and check on the MapReduce Manager and
Worker processes. It should be a shell script named bin/mapreduce . Print the messages in the
following examples. Don’t forget to check for shell script pitfalls.

Start server

Exit 1 if a Manager or Worker is already running. Otherwise, execute the following commands. We’ll
use the --logfile option to write Manager and Worker output to separate log files in var/log/ .
The ampersands (&) will cause each process to start in the background.

 Pro-tip: mapreduce-submit will fail if you haven’t implemented a server socket for the
Manager.

1

2

3

4

5

6

7

8

$ mapreduce-submit --input tests/testdata/input_small

Submitted job to Manager localhost:6000

input directory tests/testdata/input_small

output directory output

mapper executable tests/testdata/exec/wc_map.sh

reducer executable tests/testdata/exec/wc_reduce.sh

num mappers 2

num reducers 2

1

2

3

4

mkdir -p var/log

rm -f var/log/manager.log var/log/worker-6002.log var/log/worker-6001.log

mapreduce-manager --host localhost --port 6000 --logfile var/log/manager.log &

sleep 2 # give the Manager time to start

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 11/41

https://eecs485staff.github.io/p1-insta485-static/setup_scripting.html#shell-script-pitfalls

Example

Example: accidentally start server when it’s already running.

Check the logs.

5

6

mapreduce-worker --host localhost --port 6001 --manager-host localhost --
manager-port 6000 --logfile var/log/worker-6001.log &

mapreduce-worker --host localhost --port 6002 --manager-host localhost --
manager-port 6000 --logfile var/log/worker-6002.log &

1

2

$./bin/mapreduce start

starting mapreduce ...

1

2

$./bin/mapreduce start

Error: mapreduce-manager is already running

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

$ tail var/log/*.log
==> var/log/manager.log <==
Manager:6000 [INFO] Starting manager host=localhost port=6000
pwd=/Users/awdeorio/src/eecs485/p4-mapreduce/solution

Manager:6000 [INFO] Listening on UDP port 6000

Manager:6000 [INFO] Listening on TCP port 6000

Manager:6000 [WARNING] Heartbeat from unregistered Worker

Manager:6000 [INFO] Registered Worker ('localhost', 6001)

Manager:6000 [INFO] Registered Worker ('localhost', 6002)

==> var/log/worker-6001.log <==
Worker:6001 [INFO] Starting worker host=localhost port=6001
pwd=/Users/awdeorio/src/eecs485/p4-mapreduce/solution

Worker:6001 [INFO] Listening on TCP port 6001

Worker:6001 [INFO] Connecting to Manager manager_host=localhost
manager_port=6000

Worker:6001 [INFO] Starting heartbeat thread

Worker:6001 [INFO] Connected to Manager:6000

==> var/log/worker-6002.log <==
Worker:6002 [INFO] Starting worker host=localhost port=6002
pwd=/Users/awdeorio/src/eecs485/p4-mapreduce/solution

Worker:6002 [INFO] Listening on TCP port 6002

Worker:6002 [INFO] Connecting to Manager manager_host=localhost
manager_port=6000

Worker:6002 [INFO] Starting heartbeat thread

Worker:6002 [INFO] Connected to Manager:6000

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 12/41

Background processes

Ending a command with an ampersand (&) starts a process in the background. You can see
processes running in the background (or foreground) using pgrep . Your PIDs may be different
(e.g., 66369 , 66372).

If you need to stop a background process, pkill is one way to do it.

Stop server

Execute the following commands.

 Pro-tip: Watch a log in real time with tail -F . Control-C to quit.

1

2

3

4

5

6

7

$ tail -F var/log/manager.log

Manager:6000 [INFO] Starting manager host=localhost port=6000
pwd=/Users/awdeorio/src/eecs485/p4-mapreduce/solution

Manager:6000 [INFO] Listening on UDP port 6000

Manager:6000 [INFO] Listening on TCP port 6000

Manager:6000 [WARNING] Heartbeat from unregistered Worker

Manager:6000 [INFO] Registered Worker ('localhost', 6001)

Manager:6000 [INFO] Registered Worker ('localhost', 6002)

1

2

3

4

5

$ pgrep -lf mapreduce- # macOS

$ pgrep -af mapreduce- # Linux/WSL

66369
/usr/local/Cellar/python@3.10/3.10.8/Frameworks/Python.framework/Versions/3.10/R
/Users/awdeorio/src/eecs485/p4-mapreduce/env/bin/mapreduce-manager --host localh
var/log/manager.log

66372
/usr/local/Cellar/python@3.10/3.10.8/Frameworks/Python.framework/Versions/3.10/R
/Users/awdeorio/src/eecs485/p4-mapreduce/env/bin/mapreduce-worker --host localho
-manager-port 6000 --logfile var/log/worker-6001.log

66373
/usr/local/Cellar/python@3.10/3.10.8/Frameworks/Python.framework/Versions/3.10/R
/Users/awdeorio/src/eecs485/p4-mapreduce/env/bin/mapreduce-worker --host localho
-manager-port 6000 --logfile var/log/worker-6002.log

1

2

$ pkill -lf mapreduce- # macOS

$ pkill -f mapreduce- # Linux/WSL

1

2

mapreduce-submit --shutdown --host localhost --port 6000 || true
sleep 2 # give the Manager time to receive signal and send to Workers

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 13/41

Check if the Manager and Workers have shut down. If not, kill the processes. pkill ... || true
will ignore a non-zero exit status from pkill .

Example 1, server responds to shutdown message.

Example 2, server doesn’t respond to shutdown message and process is killed.

Server status

Print whether or not the Manager is running, as well as whether or not any Workers are running. Exit
0 if both the Manager and at least one Worker are running. Exit 1 otherwise. Example:

1

2

3

4

5

6

7

8

if pgrep -f mapreduce-manager &> /dev/null; then
 echo "killing mapreduce manager ..."
 pkill -f mapreduce-manager || true
fi
if pgrep -f mapreduce-worker &> /dev/null; then
 echo "killing mapreduce worker ..."
 pkill -f mapreduce-worker || true
fi

1

2

$./bin/mapreduce stop

stopping mapreduce ...

1

2

3

4

./bin/mapreduce stop

stopping mapreduce ...

killing mapreduce manager ...

killing mapreduce worker ...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

$./bin/mapreduce start

starting mapreduce ...

$./bin/mapreduce status

manager running

workers running

$ echo $?

0

$./bin/mapreduce stop

stopping mapreduce ...

killing mapreduce manager ...

killing mapreduce worker ...

$./bin/mapreduce status

manager not running

workers not running

$ echo $?

1

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 14/41

Restart server

Example

MapReduce server specification

Here we describe the functionality of the MapReduce server. The fun part is that we are only
defining the functionality and the communication protocol: the implementation is entirely up to you.
You must follow our exact specifications below, and the Manager and Worker should work
independently (i.e. do not add any more data or dependencies between the two classes).
Remember that the Manager/Workers are listening on TCP/UDP sockets for all incoming messages.
Note: To test your server, we will only be checking for the messages listed below. You should not
rely on any communication other than the messages listed below.

The Manager and Worker each has a TCP socket that it uses to listen on a loop for incoming
messages. Each outgoing TCP message should be communicated using a new TCP connection.
Note: All communication in this project will be strings formatted using JSON; sockets receive bytes
but your thread must parse them into JSON. See the Python json module for help parsing JSON.

The following sections explain how the MapReduce Manager and Worker code should function.
We’ve also provide a separate walk-through example with sample log output from our instructor
solution.

Manager overview

The Manager should accept five command-line options:

host : host address to listen for messages

port : TCP port to listen for messages and UDP port to listen for heartbeats (TCP sockets and
UDP sockets are independent, so we can use the same port number)

logfile : a file where logs are written (stderr will be used if logfile isn’t provided)

1

2

3

4

5

$./bin/mapreduce restart

stopping mapreduce ...

killing mapreduce manager ...

killing mapreduce worker ...

starting mapreduce ...

 Pro-tip: Skim the MapReduce server specification, take a look at the Design Guidance for
tips, then come back and read the specification in more detail. The Design Guidance is
completely optional.

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 15/41

https://docs.python.org/3/library/json.html
file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html

loglevel : the severity level threshold for writing logs

shared_dir : the directory in which a shared temporary directory will be created (a directory
chosen by the standard library will be used if shared_dir isn’t provided)

We’ve already configured these for you in the starter files.

On startup, the Manager should do the following:

Create a shared directory for temporary intermediate files. Use the Python standard library
tempfile.TemporaryDirectory class to create the temporary directory. An example will be
provided below.

Create a new thread, which will listen for UDP heartbeat messages from the Workers.

Create any additional threads or setup you think you may need. Another thread for fault
tolerance could be helpful.

Create a new TCP socket on the given port and call the listen() function. Note: only one
listen() thread should remain open for the whole lifetime of the Manager.

Wait for incoming messages! Ignore invalid messages, including those that fail JSON decoding.
To ignore these messages use a try/except when you to try to load the message as shown
below

Wait to return from the Manager constructor until all Manager threads have exited.

Here’s an example of how to use tempfile.TemporaryDirectory with the right naming convention
for the shared temporary directory.

1

2

3

4

try:
 msg = json.loads(msg)
except JSONDecodeError:
 continue

1

2

3

4

5

prefix = f"mapreduce-shared-"
with tempfile.TemporaryDirectory(prefix=prefix) as tmpdir:
 LOGGER.info("Created tmpdir %s", tmpdir)

 # FIXME: Add all code needed so that this `with` block doesn't end until
the Manager shuts down.

LOGGER.info("Cleaned up tmpdir %s", tmpdir)

 Pitfall: Don’t delete the shared temporary directory until the Manager shuts down. In the
above example, the temporary directory will be automatically deleted when the code leaves the
with block.

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 16/41

https://docs.python.org/3/library/tempfile.html#tempfile.TemporaryDirectory

Worker overview

The Worker should accept six command-line options, which are already configured in the starter
files:

host : host address to listen for messages

port : TCP port to listen for messages

manager-host : address at which to send messages to the Manager

manager-port : Manager TCP and UDP port to send messages

logfile : a file where logs are written (stderr will be used if logfile isn’t provided)

loglevel : the severity level threshold for writing logs

On initialization, a Worker should:

1. Create a TCP socket on the given port and call the listen() function. The listen()
should remain open for the lifetime of the Worker. Ignore invalid messages, including those that
fail JSON decoding.

2. Send a register message to the Manager. Make sure you are listening before sending this
message.

3. After receiving a register_ack message from the Manager, begin sending heartbeat
messages to the Manager.

Messages overview

The messages between the Client, Manager and Worker in the walk-through example look like this.

 NOTE: The Manager should ignore any heartbeat messages from a “misbehaving” Worker
before that Worker successfully registers with the Manager.

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 17/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html

Shutdown [Manager + Worker]

Because all of our tests require shutdown to function properly, it should be implemented first. The
Manager can receive a special message to initiate server shutdown. The shutdown message will be
of the following form and will be received on the main TCP socket:

1

2

{

 "message_type": "shutdown"

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 18/41

The Manager should forward this message to all of the living Workers that have registered with it.
The Workers, upon receiving the shutdown message, should terminate as soon as possible. If the
Worker is already in the middle of executing a task (as described below), it is okay for it to complete
that task before handling the shutdown message, as both of these happen inside a single thread.

After forwarding the message to all Workers, the Manager should terminate itself.

At this point, you should be able to pass these tests:

See the walk-through example for example log output of shutting down the MapReduce server.

See the Mocking Tutorial for an explanation of how Manager tests use mock Worker network
messages instead of running real Worker code (and vice versa).

Worker registration [Manager + Worker]

The Manager should keep track of all Workers at any given time so that the work is only distributed
among the ready Workers. Workers can be in the following states:

ready : Worker is ready to accept work

busy : Worker is performing a task

dead : Worker has failed to ping for some amount of time

The Manager must listen for registration messages from Workers. Once a Worker is ready to listen
for instructions, it should send a message like this to the Manager:

The Manager will then respond with a message acknowledging the Worker has registered,
formatted like this. After this message has been received, the Worker should start sending
heartbeats. Remember, Workers ideally will only send heartbeats after receiving this message, but
the Manager should be able to safely handle heartbeats from unregistered Workers. We’ll discuss
heartbeats later in the spec.

3 }

1

2

$ pytest -vvsx --log-cli-level=INFO tests/test_manager_00.py::test_shutdown
$ pytest -vvsx --log-cli-level=INFO tests/test_worker_00.py

1

2

3

4

5

{

 "message_type" : "register",
 "worker_host" : string,
 "worker_port" : int,
}

1

2

{

 "message_type": "register_ack",

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 19/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#shutdown
file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/mocking.html

After the first Worker registers with the Manager, the Manager should check the job queue
(described later) if it has any work it can assign to the Worker (because a job could have arrived at
the Manager before any Workers registered). If the Manager is already in the middle of a job, it
should assign the Worker the next available task immediately.

At this point, you should be able to pass the following tests:

See the walk-through example for example log output after a Worker registers.

New job request [Manager]

In the event of a new job, the Manager will receive the following message on its main TCP socket:

Assign a job_id which starts from zero and increments.

Add the job to a queue.

Run job [Manager]

If there is no current executing MapReduce job, then pop a job off the queue and execute it. The
Manager runs each job to completion before starting a new job.

First, delete the output directory if it already exists. Next, create the output directory.

Create a directory for this job’s intermediate files in the shared temporary directory you created for
Manager overview. Name it job-{job_id} , where job_id is 5 digits long. For example, the first
job should have a directory called job-00000 , followed by job-00001 , and so on.

3 }

1

2

3

$ pytest -vvsx --log-cli-level=INFO tests/test_manager_00.py::test_shutdown
$ pytest -vvsx --log-cli-level=INFO
tests/test_manager_00.py::test_shutdown_workers

$ pytest -vvsx --log-cli-level=INFO tests/test_worker_01.py

1

2

3

4

5

6

7

8

9

{

 "message_type": "new_manager_job",
 "input_directory": string,
 "output_directory": string,
 "mapper_executable": string,
 "reducer_executable": string,
 "num_mappers" : int,
 "num_reducers" : int
}

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 20/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#start-workers

At this point, you should be able to pass the following tests:

See the walk-through example for example log output after submitting a job.

Input partitioning [Manager]

The Manager scans the input directory and divides the input files into several partitions. Each
partition (a group of files) will be a new_map_task .

First, the Manager sorts the input files by name and divides them into num_mappers partitions using
round robin. Here’s an example with num_mappers=4 .

Assign each partition a task_id , starting from 0, based on the order in which you generate them.

After partitioning the input, the Manager allocates tasks to Workers by sending JSON messages.
The tasks are allocated in the order that the Workers registered. Each JSON message looks like
this:

num_partitions will be used by the mappers to determine how many partitions of output to create.
The number of partitions should be num_reducers , since the output of the Map Stage will
determine the input to each reducer.

$ pytest -vvsx --log-cli-level=INFO tests/test_manager_01.py

1

2

3

4

5

6

7

8

9

10

Before partitioning

["file03", "file02", "file01", "file05", "file04"]

After partitioning

[

 ["file01","file05"], # task_id: 0

 ["file02"], # task_id: 1

 ["file03"], # task_id: 2

 ["file04"], # task_id: 3

]

1

2

3

4

5

6

7

8

{

 "message_type": "new_map_task",
 "task_id": int,
 "input_paths": [list of strings],
 "executable": string,
 "output_directory": string,
 "num_partitions": int,
}

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 21/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#submit-a-mapreduce-job

Mapping [Manager]

The Manager assigns one task at a time to a Worker, assigning tasks in order of Worker registration.
If all the Workers are busy, the Manager will need to wait. Because we don’t know ahead of time
which Worker will become available first, which Worker performs which task could change with
different executions of the same program (the program is non-deterministic). The autograder test
cases accept all valid scenarios.

Here’s an example. Consider a MapReduce job with 2 Workers, 5 input files ["file01", "file02",
"file03", "file04", "file05"] and 4 map tasks specified.

Continuing our previous example, we’ll assume that there are two Workers and neither is busy.
Worker 0 registered first. Steps 3-6 would be slightly different if Worker 0 finished first.

1. Manager sends Worker 0 a task with input paths ["file01", "file05"]

2. Manager sends Worker 1 a task with input paths ["file02"]

3. Manager waits for a Worker to finish. In this example, it’s Worker 1.

4. Manager sends Worker 1 a task with input paths ["file03"]

5. Manager waits for a Worker to finish. In this example, it’s Worker 0.

6. Manager sends Worker 0 a task with input paths ["file04"]

At this point, you should be able to pass the following tests:

See the walk-through example for example log output of the Manager distributing map tasks to
Workers.

Mapping [Worker]

The Worker has four steps during the Map Stage.

1. Run the map executable on the specified input files.

2. Partition output of the map executable into a new temporary directory, local to the Worker.

3. Sort each output file by line using UNIX sort.

4. Move each sorted output file to the shared temporary directory specified by the Manager.

$ pytest -vvsx --log-cli-level=INFO tests/test_manager_02.py

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 22/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#map-stage

This section describes the Map Stage in the flowchart, shown with green boxes.

First, run the map executable on the input files. The output of the map executable consists of tab-
separated key-value pairs.

Second, partition the map output into several intermediate partition files. Each partition file will later
be sent to a different reducer. Compute the partition by hashing the key and then applying the
modulo operator. This policy ensures that all lines with the same key will be sent to the same
reducer. Recall that there should be as many reduce partitions as there are reducers.

Here’s how to compute the partition of one key.

The names of the intermediate files should be in the form maptask{task_id}-
part{partition_number} . Create a temporary output directory with
tempfile.TemporaryDirectory (see Run job [Manager] for more) and write the intermediate files

inside of it. Use the prefix parameter to make sure that the name of the directory starts with
"mapreduce-local-task{task_id}-" .

For example, say the current mapper is handling a new_map_task with task_id 0 and
num_partitions 2. If the key for a line of output hashes to 3, then the output path for the file

containing that line should be mapreduce-local-task00000-{random_tmpdir_name}/maptask00000-
part00001 . Make sure that the task_id and partition_number are represented with 5 digits in
each filename.

1

2

3

4

import hashlib
hexdigest = hashlib.md5(key.encode("utf-8")).hexdigest()
keyhash = int(hexdigest, base=16)
partition_number = keyhash % num_partitions

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 23/41

Up to this point, the map task should use O(1) memory. Do not store the entire map output in
memory. Do not create any files besides the ones explicitly required. We show how to do this in our
Pipe executable output example.

After all of the intermediate files are complete, sort them one at a time using UNIX sort.

Move the sorted output files into the output_directory specified by the new_map_task JSON
message. The output_directory in the Map Stage will always be the Manager’s temporary
directory.

Once a Worker has finished its task, it should send a TCP message to the Manager’s main socket in
the form:

At this point, you should be able to pass the following tests:

See the walk-through example for example log output of Workers performing their map tasks.

 Pro-tip: Use this sample code to sort the intermediate files.

This will overwrite filename with its sorted contents. Sorting in a new process makes it easier
to profile your memory usage.

subprocess.run(["sort", "-o", filename, filename], check=True)

1

2

3

4

5

6

{

 "message_type": "finished",
 "task_id": int,
 "worker_host": string,
 "worker_port": int
}

1

2

3

$ pytest -vvsx --log-cli-level=INFO tests/test_worker_03.py
$ pytest -vvsx --log-cli-level=INFO tests/test_worker_04.py
$ pytest -vvsx --log-cli-level=INFO tests/test_worker_05.py

 NOTE: You may be curious why both the Manager and the Worker create a temporary
directory, instead of the Worker writing its output directly to the directory specified by the
Manager. If we ran each Worker on a different machine, each Worker’s temporary directory
would be on local disk, while the Manager’s would be on a shared file system. Writing to local
disk is much faster than writing over the network!

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 24/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#map-stage

Pipe executable output

Pipe output from the map executable to memory. The partition code should consume the map output
from memory line-by-line as it is produced. This approach avoids storing the entire intermediate
output in memory all at once. Put another way, the Map Stage should use O(1) memory, not O(n).

Use the Python standard library subprocess.Popen class to run the map executable in a new
process. The input should be a file and the output should be piped to memory. Add Python code that
performs the partitioning using the output. We’ve provided sample code below.

Reducing [Manager]

During the Reduce Stage, the Manager should apportion reduce tasks to Workers ordered by
registration time, just like during the Map Stage.

When the Manager assigns a reduce task to a Worker, the JSON message should look like this:

Generate the task_id the same way you did during the Map Stage.

The input_paths will be files from the Manager’s shared temporary directory that were created
during the Map Stage. Each Map Stage output partition will form the input for one reducer. For
example, if the shared temporary directory contains these files:

1

2

3

4

5

6

7

8

9

10

11

12

executable = # map executable
input_path = # map input filename

with open(input_path) as infile:
 with subprocess.Popen(
 [executable],

 stdin=infile,
 stdout=subprocess.PIPE,
 text=True,
) as map_process:
 for line in map_process.stdout:
 # Add line to correct partition output file

1

2

3

4

5

6

7

{

 "message_type": "new_reduce_task",
 "task_id": int,
 "executable": string,
 "input_paths": [list of strings],
 "output_directory": string,
}

1 maptask00000-part00000

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 25/41

https://docs.python.org/3/library/subprocess.html#subprocess.Popen

Send the partition 0 files to the reducer with task_id=0 :

Send the partition 1 files to the reducer with task_id=1 :

See the walk-through example for example log output of the Manager distributing reduce tasks to
Workers.

Reducing [Worker]

For the Worker, the Reduce Stage has three steps:

1. Merge input files into one sorted output stream.

2. Run the reduce executable on merged input, writing output to a single file.

3. Move the output file to the final output directory specified by the Manager.

Each input file should already be sorted from the Map Stage.

2

3

4

maptask00000-part00001

maptask00001-part00000

maptask00001-part00001

1

2

maptask00000-part00000

maptask00001-part00000

1

2

maptask00000-part00001

maptask00001-part00001

 Pro-tip: Pathlib’s glob is a great way to get a list of all the files that belong to the same
partition.

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 26/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#reduce-stage
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob

This section describes the Reduce Stage in the flowchart, shown with purple boxes.

While the Worker is running the reduce executable, it should stream each line of input from memory
one-by-one. Use subprocess.Popen for this: it will be similar to what you used while implementing
the Map Stage. The input should be sorted collectively across each input file: the first line of input to
the executable should be the lexicographically least across all input files, and the last line should be
the greatest across all input files. This means that you will need to merge all of the input while
streaming it. We show how to pipe input to a process in our Pipe executable input example.

Understanding the problem of merging sorted lists will help you to iterate over each line while
maintaining the sorting invariant. We strongly encourage you to use heapq.merge(). Check out the
heapq Tutorial on how to use this function. Do not assume that all of a Worker’s input can fit into
memory at once.

The output from the reduce executable should all be written to a file named part-{task_id} ,
where task_id is formatted as a 5-digit number. Create a temporary output directory with
tempfile.TemporaryDirectory see Run job [Manager] for more) and write the file to it. Use the
prefix parameter to make sure that the name of the directory starts with "mapreduce-local-
task{task_id}-" , just like in the Map Stage.

After you have finished writing, move the file to the output_directory originally specified in the
new_manager_job message. The Python shutil module may be helpful for this.

Once a Worker has finished its task, it should send a TCP message to the Manager’s main socket in
the form:

1

2

3

{

 "message_type": "finished",
 "task_id": int,

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 27/41

https://docs.python.org/3/library/heapq.html#heapq.merge
https://eecs485staff.github.io/p4-mapreduce/heapq.html
https://docs.python.org/3/library/shutil.html

At this point, you should be able to pass the following tests:

See the walk-through example for example log output of Workers performing their reduce tasks.
There is also an example of what the final output should be.

Pipe executable input

Pipe input from memory to the reduce executable. Merge the sorted intermediate files using
heapq.merge() . Pipe the output of heapq.merge() into the subprocess’s stdin. Do not write the

merge output to file.

Use the Python standard library subprocess.Popen class to run the reduce executable in a new
process. The input should be the output of heapq.merge() . The output is a file. We’ve provided
sample code below, which you’ll need to augment with a call to heapq.merge() .

Wrapping up [Manager]

After finishing a MapReduce job, delete the job’s directory for intermediate files within the shared
directory, e.g. job-00000 . On shutdown, this should happen automatically, but you need to make
sure it happens at the end of each job as well.

Execute the next job on the queue, if any.

4

5

6

 "worker_host": string,
 "worker_port": int
}

1

2

$ pytest -vvsx --log-cli-level=INFO tests/test_worker_07.py
$ pytest -vvsx --log-cli-level=INFO tests/test_worker_08.py

1

2

3

4

5

6

7

8

9

10

11

12

13

14

executable = # reduce executable
instream = # merged input files
outfile = # open output file

with subprocess.Popen(
 [executable],

 text=True,
 stdin=subprocess.PIPE,
 stdout=outfile,
) as reduce_process:

 # Pipe input to reduce_process

 for line in instream:
 reduce_process.stdin.write(line)

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 28/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#reduce-stage
file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/example.html#output
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

At this point, you should be able to pass the following test:

You might also consider the optional Deploy to AWS after finishing your MapReduce
implementation.

Fault tolerance and heartbeats [Manager + Worker]

Workers can die at any time and may not finish tasks that you send them. Your Manager must
accommodate this. If a Worker misses more than 5 pings in a row, you should assume that it has
died, and assign whatever work it was responsible for to another Worker.

Each Worker will have a heartbeat thread to send updates to the Manager via UDP. The messages
should look like this, and should be sent every 2 seconds:

If a Worker dies after the Manager assigned it a task but before completing the task and notifying
the Manager, then the Manager should reassign the task to a free Worker when one becomes
available. For simplicity, the Manager should first assign all tasks in the current stage before
reassigning tasks from dead Workers.

If the Manager attempts to send a TCP message to a Worker and gets a ConnectionRefusedError ,
mark the Worker as dead. Mark it as dead even if 10 seconds (5 pings) have not yet elapsed. If the
Manager was trying to send that Worker a task, treat the task as a normal unassigned task and
assign it to the next available Worker.

When a Worker dies, mark the failed Worker as dead, but do not remove it from the Manager’s
internal data structures. This is due to constraints on the Python dictionary data structure. It can
result in an error when keys are modified while iterating over the dictionary. For more info on this,
please refer to this link.

A Worker may die and then revive and re-register before the Manager is able to mark it as dead.
Even if this happens, all tasks in the running job must be completed. Whether or not to use the
Worker’s most recent registration when determining task assignment order is up to you.

Your Manager should attempt to maximize concurrency, but avoid duplication. In other words, don’t
send the same task to different Workers until you know that the Worker who was previously

$ pytest -vvsx --log-cli-level=INFO tests/test_manager_03.py

1

2

3

4

5

{

 "message_type": "heartbeat",
 "worker_host": string,
 "worker_port": int
}

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 29/41

https://docs.python.org/3/c-api/dict.html

assigned that task has died. Remember that a Worker can die during any stage. If all Workers die,
the Manager should wait until a new Worker registers, then resume.

At this point, you should be able to pass the following test:

MapReduce server implementation

Manager code goes in the mapreduce/manager package. We provide
mapreduce/manager/__main__.py as a starting point.

Worker code goes in the mapreduce/worker package. We provide
mapreduce/worker/__main__.py as a starting point.

Shared code goes in the mapreduce/utils package.

Design guidance

The MapReduce server specification defines only the communication protocol for the Manager and
the Worker. The implementation is entirely up to you.

It can be tempting to try and write all of your code within the Manager and Worker classes, but this
tends to result in a solution that is difficult to debug and modify. Some things to think about:

Is there any functionality that can be shared by the Manager and the Worker?

What state does the Manager maintain? Which abstractions should maintain that state?

Spend some time thinking about how you can break up your solution into small and manageable
pieces. Here are a few ideas from the instructor solution. Remember that none of these are required
and we encourage you to go with a design that makes the most sense to you!

Shared networking code

Consider adapting the provided code in the Threads and Sockets Tutorial to create networking
functions that can be used by both the Manger and Worker:

A tcp_server function that continuously listens for messages on a socket, and calls a callback
“handler” function when a message is received.

1

2

$ pytest -vvsx --log-cli-level=INFO tests/test_manager_05.py
$ pytest -vvsx --log-cli-level=INFO tests/test_worker_13.py

1

2

def tcp_server(host, port, signals, handle_func):
 # ...

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 30/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/threads-sockets.html

A udp_server function that does the same but for UDP messages.

tcp_client and udp_client functions that can be reused to send messages over the
network.

Here’s how your imports would look if you defined tcp_server() in
mapreduce/utils/network.py .

mapreduce/utils/__init__.py

mapreduce/worker/__main__.py

Manager

If you’re not very familiar with classes in Python, we recommend you read A First Look at Classes to
familiarize yourself with class syntax and semantics in Python.

Consider creating a Job class to manage the state that is specific to a particular job, like pending
tasks and the current phase of the job.

Consider creating a RemoteWorker class to represent the Manager’s view of a Worker process and
keep track of its state.

from mapreduce.utils.network import tcp_server

1

2

3

from mapreduce.utils import tcp_server
Call the function later

tcp_server(...)

1

2

3

4

5

6

7

8

9

10

11

class Job:
 def next_task(self):
 """Return the next pending task to be assigned to a Worker."""

 def task_reset(self, task):
 """Re-enqueue a pending task, e.g., when a Worker is marked dead."""

 def task_finished(self, task):
 """Mark a pending task as completed."""

 # Add constructor and other methods

1

2

3

4

5

class RemoteWorker:
 def assign_task(self, task):
 """Assign task to this Worker."""

 def unassign_task(self):

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 31/41

https://docs.python.org/3/tutorial/classes.html#a-first-look-at-classes

Next, consider how you might manage a pool of Workers that have registered with the Manager.
What methods might be useful on a collection of remote Workers?

You may choose to use some or none of the abstractions mentioned above. This design guidance is
completely optional. Ultimately, you should decide for yourself how you’d like to design your
solution!

Thread-safe OrderedDict

Consider using the ThreadSafeOrderedDict class that we provide for you in mapreduce.utils if
you need a dictionary that’s accessed in multiple threads. It can be used exactly the same way as a
normal dictionary, but avoids concurrency bugs during simultaneous accesses from multiple threads
. Here’s a simple example:

Libraries

Here are some quick links to the libraries we used in our instructor implementation.

Python Subprocess

Python Multithreading

Python Sockets

Python JSON Library

Python heapq Library

Python pathlib Library (Object-oriented filesystem paths)

Python tempfile Library

Python Logging facility

Python shutil Library

A note about paths

This project will use a lot of file paths. First, using Pathlib will help a lot with file path manipulation.

6

7

8

 """Unassign task and return it, e.g., when Worker is marked dead."""

 # Add constructor and other methods

1

2

3

4

5

from mapreduce.utils import ThreadSafeOrderedDict

dict_example = ThreadSafeOrderedDict()
dict_example["a"] = 1
dict_example["b"] = 2

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 32/41

https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/tempfile.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/pathlib.html

Second, a program shouldn’t assume that paths will be absolute (start with /) or relative. For
example, it should work if the mapper executable is supplied as tests/testdata/exec/wc_map.sh
or /Users/awdeorio/src/eecs485/p4-mapreduce/tests/testdata/exec/wc_map.sh .

A note about sockets

Use context managers to automatically close sockets (explanation).

Good example:

Bad example:

Logging

Use Python logging to print messages from concurrent processes and threads. With logging, you
can enable and disable messages (see here) and see which Worker or Manager printed the
message.

Good example:

Bad example:

The Python logging facility is helpful for monitoring multiple processes. For logging output similar to
the instructor solution, use the logging code included in the starter files.

Do not use the print() function in project 4. If you do, you will quickly find that it becomes
unwieldy when trying to understand the output produced by multiple processes and threads all
running concurrently. The logging module provides more powerful tools that give you more control
over your debugging output. The doc link provided at the top of this section contains a lot of
information if you’d like to make the most of what the logging module has to offer. At a minimum,
however, you should use LOGGER.info() and LOGGER.debug() like in the starter files.

Pretty-print with __repr__()

1

2

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
 ...

1

2

3

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
...

sock.close()

LOGGER.info("Assigned task to Worker %s %s", task, worker)

print(f"Assigned task to Worker {task} {worker}")

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 33/41

https://towardsdatascience.com/https-medium-com-sinister-why-using-a-context-manager-is-a-better-choice-55ccfcecddb8
https://docs.python.org/3/library/logging.html

The __repr__() method produces a string representation of an object. It’s useful for logging and
debugging. Python docs on repr

This example uses the MapTask class from our instructor solution. One MapTask represents one
map task. It is created by the Manager and sent to a Worker for execution. We’ve simplified it here
by removing most of the member functions and member variables.

With a __repr__() function, we get nice, human-readable output.

Without a __repr__() function, we would see an object’s address in memory, which isn’t very
helpful.

Logging with __repr__

Here’s an example of the instructor solution logging output. We log a Task object and a
RemoteWorker object. Both have __repr__() functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class MapTask:
 """Represent one map task."""

 def __init__(self, input_files, executable, output_directory):
 self.input_files = input_files
 self.executable = executable
 self.output_directory = output_directory

 def __repr__(self):
 """Return a string representation of the object."""

 return (
 "MapTask("

 f"input_files={repr(self.input_files)}, "

 f"executable={repr(self.executable)}, "

 f"output_directory={repr(self.output_directory)}"

 ")"

)

1

2

3

4

>>> from task import WorkerTask
>>> task = MapTask(input_files=["file01", "file02"], executable="map0.py",
output_directory="output")
>>> task

MapTask(input_files=['file01', 'file02'], executable='map.py',
output_directory='output')

1

2

>>> task

<__main__.MapTask object at 0x102a8ff10>

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 34/41

https://docs.python.org/3/library/functions.html#repr

When we run our solution, we get easy-to-read log messages.

Testing

We have provided a decently comprehensive public test suite for project 4. However, you should
attempt to test some features of your MapReduce solution on your own. As stated above, the walk-
through example should help you get started on testing your solution’s functionality.

We have provided a simple word count map and reduce example. Run these executables at the
command line without your MapReduce code to generate the correct answers in correct.txt .
Then, concatenate your MapReduce server’s output into one file, output.txt . The default output
directory provided by submit.py is output , but it is configurable.

Note that the map and reduce executables can be in any language–your server should not limit us
to running map and reduce jobs written in Python! To help you test this, we have also provided you
with a word count solution written in a shell script (see section below).

Note that the autograder will watch your Worker and Manager only for the messages we specified
above. Your code should have no other dependencies besides the communication protocol, and the
messages sent in your system must match those listed in this spec exactly.

1

2

3

4

5

6

LOGGER = logging.getLogger(__name__)
class Manager():
 # ...

 def run_next_task(self):
 # ...

 LOGGER.info("Assigned task to Worker %s %s", task, worker)

1

2

3

4

5

$./bin/mapreduce start

$ mapreduce-submit

...

Manager:6000 [INFO] Assigned task to Worker MapTask(input_files=['file01',
'file05'], executable='wc_map.sh', output_directory='mapper-output')
RemoteWorker(host='localhost', port=6002, pid=42319)

...

1

2

3

4

5

6

7

$ cat tests/testdata/input/* | tests/testdata/exec/wc_map.sh | sort | \
 tests/testdata/exec/wc_reduce.sh > correct.txt

$./bin/mapreduce start

$ mapreduce-submit

$./bin/mapreduce stop

$ cat output/* | sort > output.txt
$ diff output.txt correct.txt

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 35/41

Run the public unit tests. Add the -vvs flag to pytest to show output and the --log-cli-

level=INFO flag to show logging messages. The -x option will stop after the first failed test.

Mocking

The test cases use mocking, which imitates the behavior of a component during testing. For
example, test_worker_01.py uses a mock Manager to test your real Worker .

Refer to the Project 4 Test Cases and Mocking Tutorial to understand the project 4 test cases.

Test for busy-waiting

A solution that busy-waits may pass on your development machine and fail on the autograder due to
a timeout. Your laptop is probably much more powerful than the restricted autograder environment,
so you might not notice the performance problem locally. See the Threads and Sockets Tutorial for
an explanation of busy-waiting.

To detect busy-waiting, time a Manager without any Workers. After a few seconds, kill it by pressing
Control - C several times. Ignore any errors or exceptions. We can tell that this solution busy-waits

because the user time is similar to the real time.

This example does not busy-wait. Notice that the user time is small compared to the real time.

Testing fault tolerance

1

2

3

$ pwd

/Users/awdeorio/src/eecs485/p4-mapreduce

$ pytest -vvsx --log-cli-level=INFO

1

2

3

4

5

6

7

$ time mapreduce-manager

Manager:6000 [INFO] Starting manager:6000

...

real 0m4.475s

user 0m4.429s

sys 0m0.039s

1

2

3

4

5

6

7

$ time mapreduce-manager

Manager:6000 [INFO] Starting manager:6000

...

real 0m3.530s

user 0m0.275s

sys 0m0.036s

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 36/41

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/mocking.html
file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/threads-sockets.html#busy-waiting

This section will help you verify fault tolerance. The general idea is to kill a Worker while it’s running
an intentionally slow MapReduce job.

We have provided an intentionally slow MapReduce job in tests/testdata/exec/wc_map_slow.sh
and tests/testdata/exec/wc_reduce_slow.sh . These executables use sleep statements to
simulate a slow running task. You may want to increase the sleep time.

Start the MapReduce server.

Submit an intentionally slow MapReduce job and wait for the mappers to begin executing.

Kill one of the Workers while it is executing a map or reduce job. Quickly use pgrep to find the PID
of a Worker, and then use kill on its PID. You can use pgrep again to check that you actually
killed the Worker.

Here’s a way to kill one Worker with one line.

Finally, verify the correct behavior by checking the logs for the number of map tasks or reduce tasks.
In this example, the Manager resends the map task with task_id=1 . Your log messages might be
different.

$./bin/mapreduce restart

1

2

3

4

5

6

7

$ mapreduce-submit \

 --input tests/testdata/input_small \

 --output output \

 --mapper tests/testdata/exec/wc_map_slow.sh \

 --reducer tests/testdata/exec/wc_reduce_slow.sh \

 --nmappers 2 \

 --nreducers 2

1

2

3

4

5

6

$ pgrep -f mapreduce-worker

77811

77893

$ kill 77811

$ pgrep -f mapreduce-worker

77893

$ pgrep -f mapreduce-worker | head -n1 | xargs kill

1

2

$ grep 'Received task MapTask' var/log/worker-600*
var/log/worker-6001.log:Worker:6001 [INFO] Received task
MapTaskMessage(task_id=1, input_paths=['tests/testdata/input_small/file02'],
executable='tests/testdata/exec/wc_map_slow.sh',
output_directory='/var/folders/kg/lqyv94dn1ybdkjgdpj1rd5ch0000gq/T/mapreduce-
shared-97koskaf/job-00000', num_partitions=2)

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 37/41

Code style

As in previous projects, all Python code should contain no errors or warnings from pycodestyle ,
pydocstyle , and pylint .

You may not use any external dependencies aside from what is provided in pyproject.toml .

Submitting and grading

One team member should register your group on the autograder using the create new invitation
feature.

3

4

var/log/worker-6002.log:Worker:6002 [INFO] Received task
MapTaskMessage(task_id=0, input_paths=['tests/testdata/input_small/file01'],
executable='tests/testdata/exec/wc_map_slow.sh',
output_directory='/var/folders/kg/lqyv94dn1ybdkjgdpj1rd5ch0000gq/T/mapreduce-
shared-97koskaf/job-00000', num_partitions=2)

var/log/worker-6002.log:Worker:6002 [INFO] Received task
MapTaskMessage(task_id=1, input_paths=['tests/testdata/input_small/file02'],
executable='tests/testdata/exec/wc_map_slow.sh',
output_directory='/var/folders/kg/lqyv94dn1ybdkjgdpj1rd5ch0000gq/T/mapreduce-
shared-97koskaf/job-00000', num_partitions=2)

 Pro-tip: Script this test! Here’s an example. You might need to the change the pattern in the
grep command.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#!/bin/bash

set -Eeuxo pipefail

./bin/mapreduce restart

mapreduce-submit \

 --input tests/testdata/input_small \

 --output output \

 --mapper tests/testdata/exec/wc_map_slow.sh \

 --reducer tests/testdata/exec/wc_reduce_slow.sh \

 --nmappers 2 \

 --nreducers 2

sleep 2

pgrep -f mapreduce-worker | head -n1 | xargs kill

tail -F var/log/worker-*.log | grep --line-buffered -i received

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 38/41

Submit a tarball to the autograder, which is linked from https://eecs485.org. Include the --disable-
copyfile flag only on macOS.

Rubric

This is an approximate rubric.

Deliverable Value

Public unit tests 60%

Hidden unit tests run after the deadline 40%

Deploy to AWS

This section is optional. Once you’ve finished implementing your MapReduce server, you may
choose to deploy it on a cluster of AWS EC2 instances by following the instructions in the
MapReduce AWS tutorial.

This is a great way to see your project working in action as a distributed system!

Shutting down AWS Resources

Be sure to shut down your EC2 instances when you’re done with them (Stop EC2 Instance
Instructions). You should also remove your EFS file system when you’ve finished the project.

FAQ

Q: I can start my Manager/Worker with commands correctly, but when I run the tests, my code
seems to not be doing anything.

A: Make sure you start up your Manager/Worker instances in the constructor.

Q: What is StopIteration error?

1

2

3

4

5

6

7

$ tar \

 --disable-copyfile \

 --exclude '*__pycache__*' \

 --exclude '*tmp*' \

 -czvf submit.tar.gz \

 bin \

 mapreduce

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 39/41

https://eecs485.org/
file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/aws-tutorial.html
https://eecs485staff.github.io/p2-insta485-serverside/setup_aws.html#stop-ec2-instance
https://eecs485staff.github.io/p2-insta485-serverside/setup_aws.html#stop-ec2-instance

A: Repeated calls to the mock test functions (fake Manager or fake Worker) will return values from a
hardcoded sequence (an iterable). When the iterable is exhausted, a StopIteration exception is
raised. https://docs.python.org/3/library/exceptions.html#StopIteration

In the tests, we are using a Mock class to fake the socket functions. Whenever socket.recv() is
called, the tests will send a pre-defined fake message (see worker_message_generator and
manager_message_generator in each test for details). When socket.recv() is called but no

message is given (the message generators run out of pre-defined fake messages), a
StopIteration exception is raised.

Make sure socket.recv() is not called after the last fake message, which is the shutdown
message.

Q: Why am I getting a Failed to close threads or Connection Refused error?

A: In the tests, we call the Manager / Worker class constructors to run your program. Make sure
the constructors start your program and only exit when all threads are closed.

Q: Why do I get TypeError: Object of type PosixPath is not JSON serializable ?

A: By default the Python json library does not know how to convert a pathlib.Path object to a
string. Here’s how to do it:

Q: I need to open multiple files at once, but Pylint fails with R1732: Consider using 'with' for
resource-allocating operations (consider-using-with) . How can I open multiple files using a
context manager?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class PathJSONEncoder(json.JSONEncoder):
 """

 Extended the Python JSON encoder to encode Pathlib objects.

 Docs: https://docs.python.org/3/library/json.html

 Usage:

 >>> json.dumps({

 "executable": TESTDATA_DIR/"exec/wc_map.sh",

 }, cls=PathJSONEncoder)

 """

 def default(self, o):
 """Override base class method to include Path object serialization."""

 if isinstance(o, pathlib.Path):
 return str(o)
 return super().default(o)

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 40/41

A: You’ll have to use a contextlib.ExitStack object when opening multiple files at once to pass
the style tests. See the docs.

Acknowledgments

Original document written by Andrew DeOrio awdeorio@umich.edu, Prateek Sachdeva, and Isaac
Bowen. Noah Weingarden contributed features and removed many bugs.

This document is licensed under a Creative Commons Attribution-NonCommercial 4.0 License.
You’re free to copy and share this document, but not to sell it. You may not share source code
provided with this document.

3/13/25, 12:29 PM p4-mapreduce

file:///home/runner/work/p4-mapreduce/p4-mapreduce/_site/index.html 41/41

https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack
mailto:awdeorio@umich.edu
https://creativecommons.org/licenses/by-nc/4.0/

