
p3-insta485-clientside

React/JS Tutorial
This tutorial will walk you through a simple React/JS application that fetches from a REST API. The
app will display a single social media post.

Prerequisites

You should have these configuration files from the starter files.

 Pitfall: This tutorial is meant to be a supplement to the official React docs. Be sure to read
them!

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 1/11

https://eecs485staff.github.io/p3-insta485-clientside/
file:///#starter-files
https://react.dev/learn

You should have a minimally functional REST API from the Flask REST API Tutorial.

Install tool chain

We’ll install these tools:

Command line JavaScript interpreter node

Package manager npm

Third-party JavaScript libraries and frameworks like React

Module bundler webpack

Compiler babel

Linter eslint

Formatter prettier

End-to-end testing framework Cypress

Node.js

Install the Node.js JavaScript interpreter and NPM package manager. The latest LTS version or
higher is required for EECS 485.

macOS

Your versions may be different.

Linux/WSL

1

2

$ ls

package-lock.json package.json webpack.config.js ...

1

2

3

4

5

6

7

$ source env/bin/activate

$ flask --app insta485 --debug run --host 0.0.0.0 --port 8000

$ curl http://localhost:8000/api/v1/posts/1/

{

 "imgUrl": "/uploads/122a7d27ca1d7420a1072f695d9290fad4501a41.jpg",

 "owner": "awdeorio",

}

1

2

3

4

5

$ brew install node

$ node --version

v19.8.1

$ npm --version

9.5.1

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 2/11

https://eecs485staff.github.io/p2-insta485-serverside/setup_flask.html#rest-api

Uninstall older versions of Node, then install the latest version from a third-party package repository
maintained by NodeSource.

JavaScript packages

Install third-party packages like React. Package manager npm reads package-lock.json and
package.json and installs into ./node_modules/ . You can ignore warnings about funding and

vulnerabilities.

Social Media Post App

1

2

3

4

5

6

7

8

9

10

11

12

13

14

$ sudo apt remove nodejs

$ sudo apt autoremove

$ sudo apt update

$ sudo apt install -y ca-certificates curl gnupg

$ sudo mkdir -p /etc/apt/keyrings

$ curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | sudo
gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg

$ NODE_MAJOR=23
$ echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg]
https://deb.nodesource.com/node_$NODE_MAJOR.x nodistro main" | sudo tee
/etc/apt/sources.list.d/nodesource.list

$ sudo apt update

$ sudo apt install nodejs -y

$ node --version

v20.7.0

$ npm --version

10.1.0

1

2

3

$ npm ci .

...

added 758 packages, and audited 759 packages in 4s

 WSL Pitfall: npm may be slow or produce errors on network file shares. WSL uses a
network file share between the Linux and Windows file systems. Use a folder that’s not a
network file share.

Bad Example Good Example

/mnt/c/Users/awdeorio/ /home/awdeorio/

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 3/11

This example is an app that displays a single social media post using React. The app fetches data
from a REST API and displays it to the user.

Before continuing, read the React quick start.

Files

Start by creating an empty JavaScript package for our web app.

Your files should look like this. It’s OK if you have other files copied from Project 2.

index.html

Edit or create an HTML file, e.g., insta485/templates/index.html . If you copied your HTML from
project 2, delete all the jinja template code that displays the feed, but keep the navigation bar.

Add an empty div with an id of reactEntry to your top level HTML file. Later, we’ll write
JavaScript code to add DOM nodes at this entry point.

Then load the bundle.js , which will contain JavaScript code for the app we’re about to write.

insta485/templates/index.html

1

2

3

4

5

$ mkdir -p insta485/js/

$ mkdir -p insta485/templates/

$ touch insta485/js/main.jsx

$ touch insta485/js/post.jsx

$ touch insta485/templates/index.html

1

2

3

4

5

6

7

$ tree insta485/

insta485/

├── js

│ ├── main.jsx

│ └── post.jsx

└── templates

 └── index.html

1

2

3

4

5

6

7

8

<html>

<body>

 <!-- Plain old HTML and jinja2 nav bar goes here -->

 <div id="reactEntry">

 Loading ...

 </div>

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 4/11

https://react.dev/learn

Notice that the HTML code asks for bundle.js , which is the output of our module bundler and
compiler. The inputs to the bundler and compiler are the JavaScript files in insta485/js/ . The
output is a single JavaScript file that is completely self-contained with no dependencies,
insta485/static/js/bundle.js .

main.jsx

The main.jsx file includes import statements for React libraries and our custom Post
component. It also connects the custom Post component to the reactEntry div from above in
our index.html .

insta485/js/main.jsx

In this example, we render one component, Post . In your project, you will render many, but still use
only one createRoot() and root.render() call with a parent component that manages child
components. See this section of the React Docs and Thinking in React docs.

Wrapping your React application in <StrictMode> helps catch bugs by triggering extra re-renders
and Effects checks during development. See here for documentation.

post.jsx

The post.jsx file contains a React component called Post that represents one social media post.

9

10

11

12

 <!-- Load JavaScript -->

 <script src="{{ url_for('static', filename='js/bundle.js') }}"></script>

</body>

</html>

1

2

3

4

5

6

7

8

9

10

11

12

13

import React, { StrictMode } from "react";
import { createRoot } from "react-dom/client";
import Post from "./post";

// Create a root

const root = createRoot(document.getElementById("reactEntry"));

// Insert the post component into the DOM. Only call root.render() once.

root.render(

 <StrictMode>
 <Post url="/api/v1/posts/1/" />
 </StrictMode>
);

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 5/11

https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/thinking-in-react
https://react.dev/reference/react/StrictMode

insta485/js/post.jsx

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

import React, { useState, useEffect } from "react";

// The parameter of this function is an object with a string called url inside
it.

// url is a prop for the Post component.

export default function Post({ url }) {
 /* Display image and post owner of a single post */

 const [imgUrl, setImgUrl] = useState("");
 const [owner, setOwner] = useState("");

 useEffect(() => {
 // Declare a boolean flag that we can use to cancel the API request.

 let ignoreStaleRequest = false;

 // Call REST API to get the post's information

 fetch(url, { credentials: "same-origin" })

 .then((response) => {
 if (!response.ok) throw Error(response.statusText);
 return response.json();
 })

 .then((data) => {
 // If ignoreStaleRequest was set to true, we want to ignore the
results of the

 // the request. Otherwise, update the state to trigger a new render.

 if (!ignoreStaleRequest) {
 setImgUrl(data.imgUrl);

 setOwner(data.owner);

 }

 })

 .catch((error) => console.log(error));

 return () => {
 // This is a cleanup function that runs whenever the Post component

 // unmounts or re-renders. If a Post is about to unmount or re-render,
we

 // should avoid updating state.

 ignoreStaleRequest = true;
 };

 }, [url]);

 // Render post image and post owner

 return (

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 6/11

Props

The Post component is a pure function, always returning the same output for the same input.

Inputs are passed as props, which are function parameters. Props are read-only and immutable, so
components cannot change their props. The Post component takes a single prop, url .

The output is a tree of DOM nodes described by JSX syntax. JSX is a JavaScript extension that
compiles into JavaScript code for creating DOM nodes.

Please read the Describing the UI chapter of the React Docs to learn more about using JSX to
render React components.

State

For mutable values (values that change), we use state. When state changes, the component re-
renders, the DOM changes, and the user can see the updated page.

The Post component changes two values: an image URL (imgUrl), and the creator of the post
(owner). Initially, both values are set to an empty string.

Both state and props can appear in the output.

41

42

43

44

45

46

 <div className="post">

 <p>{owner}</p>

 </div>

);

}

1

2

3

4

5

6

7

8

9

10

export default function Post({ url }) {
 // ...

 return (
 <div className="post">

 <p>{owner}</p>

 </div>

);

}

1

2

3

export default function Post({ url }) {
 const [imgUrl, setImgUrl] = useState("");
 const [owner, setOwner] = useState("");

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 7/11

https://react.dev/learn/keeping-components-pure
https://react.dev/learn/describing-the-ui

In the next section, we’ll use setImgUrl() and setOwner() to modify state with values from a
REST API.

Please read the Adding Interactivity chapter of the React Docs to learn more about state.

Fetch from a REST API

For this example, the Post component will fetch from a REST API that returns post details like this.
The REST API for your project will include more detail!

/api/v1/posts/1/

After calling the above REST API with fetch() , setImgUrl() and setOwner() update their
respective states, triggering a re-render.

4

5

6

7

8

9

10

11

12

 // ...

 return (
 <div className="post">

 <p>{owner}</p>

 </div>

);

1

2

3

4

{

 "imgUrl": "/uploads/122a7d27ca1d7420a1072f695d9290fad4501a41.jpg",
 "owner": "awdeorio",
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

export default function Post({ url }) {
 const [imgUrl, setImgUrl] = useState("");
 const [owner, setOwner] = useState("");

 useEffect(() => {
 // Call REST API to get the post's information

 fetch(url, { credentials: "same-origin" })

 .then((response) => {
 if (!response.ok) throw Error(response.statusText);
 return response.json();
 })

 .then((data) => {
 setImgUrl(data.imgUrl);

 setOwner(data.owner);

 }

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 8/11

https://react.dev/learn/adding-interactivity

The fetch() function is called inside an anonymous function passed to useEffect() . This
anonymous function is called by React after the component renders. See our explanation of Data
Fetching in React with useEffect for an in-depth explanation.

The line }, [url]); contains useEffect ’s dependency array, which controls when the effect
runs. If you don’t pass in an array, it will run on every render. If you pass in an empty array, it will run
only after the first render. And, if you include variables in the array, it will run after the first render and
whenever those variables change.

Please read the Synchronizing With Effects section of the React Docs to learn more about side-
effects.

Build and run

Run the module bundler webpack , which puts together our code with third-party library code. It also
uses babel to compile modern JavaScript to a version supported by older web browsers.

The inputs are the JSX files in insta485/js/ and the JavaScript packages in node_modules/ .
The output is a single file insta485/static/js/bundle.js . The configuration is in
webpack.config.js .

Run your Flask web server.

Browse to http://localhost:8000/, and you will be able to see the Post component.

16

17

18

19

20

 .catch((error) => console.log(error));

 // ...

 }, [url]);

}

1

2

3

$ npx webpack

...

webpack 5.6.0 compiled successfully in 2290 ms

$ flask --app insta485 --debug run --host 0.0.0.0 --port 8000

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 9/11

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react_fetch_useeffect.html
file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react_fetch_useeffect.html
https://react.dev/learn/synchronizing-with-effects
http://localhost:8000/

Developer Tools

In this section, we’ll discuss using eslint and prettier to enforce coding style and a web
browser extension that helps debug React applications.

eslint

We use eslint to enforce the AirBnB JavaScript coding standard. The configuration is in the
.eslintrc.js provided with the starter files.

prettier

We use prettier to enforce default formatting rules. You can also have prettier fix formatting
automatically.

1

2

$ npx eslint insta485/js/post.jsx # Check one file

$ npx eslint --ext jsx insta485/js/ # Check all files

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 10/11

https://github.com/airbnb/javascript
https://prettier.io/docs/en/index.html

React Developer Tools

React Developer Tools is a web browser extension that adds a “Components” tab to the developer
tools. It lets you browse your React components organized in a way that looks a lot like your JSX
code, rather than the complex DOM that results from your source code. See the React/JS
Debugging Tutorial for an example of how to use this tool.

Browser refresh and JavaScript

JavaScript source code is sometimes cached by the web browser. If you change the source code,
you need to tell your browser to clear the cache and reload the JavaScript using the hard refresh.
The commands for a hard refresh are different based on your OS and browser so take a look on
how to hard refresh with your system. If you are using Chrome, you can also disable caching by
going to the network tab of the web inspector developer tool and clicking on the checkbox that says
“Disable cache”. This comic “explains” (credit: xkcd.com).

Acknowledgments

Original document written by Andrew DeOrio awdeorio@umich.edu.

This document is licensed under a Creative Commons Attribution-NonCommercial 4.0 License.
You’re free to copy and share this document, but not to sell it. You may not share source code
provided with this document.

1

2

$ npx prettier --check insta485/js # Check

$ npx prettier --write insta485/js # Fix

2/19/25, 8:15 PM React Tutorial | p3-insta485-clientside

file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react.html 11/11

https://react.dev/learn/react-developer-tools
file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react_js_debugging.html
file:///home/runner/work/p3-insta485-clientside/p3-insta485-clientside/_site/setup_react_js_debugging.html
https://fabricdigital.co.nz/blog/how-to-hard-refresh-your-browser-and-clear-cache
https://xkcd.com/1854/
mailto:awdeorio@umich.edu
https://creativecommons.org/licenses/by-nc/4.0/

