
p2-insta485-serverside

EECS485 P2: Server-side Dynamic Pages
Due 11:59pm ET September 22, 2024. This is a group project to be completed in groups of two to
three.

Change Log

Initial Release for F24

2024-09-09: Add callout for DeprecationWarning when running tests

2024-09-16: Move SQL injection test case to All Pages

Introduction

An Instagram clone implemented with server-side dynamic pages. This is the second of an EECS
485 three project sequence: a static site generator from templates, server-side dynamic pages, and
client-side dynamic pages.

Build an interactive website using server-side dynamic pages. Reuse the templates from project 1,
rendering them on-demand when a user loads a page. New features include creating, updating, and
deleting users, posts, comments, and likes.

The learning goals of this project include server-side dynamic pages, CRUD (Create, Read, Update,
Delete), sessions, and basic SQL database usage.

Here’s a preview of what your finished project will look like. A database-backed interactive website
will work (mostly) like the real Instagram.

1

2

3

$./bin/insta485run

 * Serving Flask app "insta485"

 * Running on http://127.0.0.1:8000/ (Press CTRL+C to quit)

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 1/32

https://eecs485staff.github.io/p2-insta485-serverside/

Then you will navigate to http://localhost:8000 and see working, multi-user, interactive website that

you created.

This project adds lots features. For example, users can add likes and comments.

Setup

Group registration

Please register your group on the Autograder. The office hours queue will give first priority to groups
asking a question for the first time in a day.

AWS account and instance

You will use Amazon Web Services (AWS) to deploy your project. AWS account setup may take up
to 24 hours, so get started now. Create an account, Start EC2 instance, and configure the instance.
Don’t deploy yet. Only one group member needs to set up an AWS account. AWS Tutorial.

Project folder

Create a folder for this project. Your folder location might be different.

1 $ pwd

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 2/32

http://localhost:8000/
https://autograder.io/
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_aws.html

Version control

Set up version control using the Version control tutorial.

Be sure to check out the Version control for a team tutorial.

Only one group member needs to create the remote repository.

After you’re done, you should have a local repository with a “clean” status and your local repository
should be connected to a remote GitHub repository.

You should have a .gitignore file (instructions).

2 /Users/awdeorio/src/eecs485/p2-insta485-serverside

 Pitfall: Avoid paths that contain spaces. Spaces cause problems with some command line
tools.

Bad Example Good Example

EECS 485/Project 2 Insta485 Server-side eecs485/p2-insta485-serverside

 WSL Pitfall: Avoid project directories starting with /mnt/c/ . This shared directory is slow.

Bad Example Good Example

/mnt/c/ ... /home/awdeorio/ ...

1

2

3

4

5

6

7

8

9

10

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$ git status

On branch main

Your branch is up-to-date with 'origin/main'.

nothing to commit, working tree clean

$ git remote -v

origin https://github.com/awdeorio/p2-insta485-serverside.git (fetch)

origin https://github.com/awdeorio/p2-insta485-serverside.git (push)

1

2

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 3/32

https://eecs485staff.github.io/p1-insta485-static/setup_git.html
https://eecs485staff.github.io/p1-insta485-static/setup_git.html#version-control-for-a-team
https://eecs485staff.github.io/p1-insta485-static/setup_git.html#add-a-gitignore-file

Starter files

Download and unpack the starter files. Only one group member needs to download and unpack the
starter files and the rest of the group can clone the repository.

Move the starter files to your project directory and remove the original starter_files/ directory.

You should see these files.

requirements.txt Python package dependencies matching autograder

pyproject.toml Insta485 Python package configuration

sql/uploads/ Sample image uploads

tests/ Public unit tests

3

4

5

$ head .gitignore

This is a sample .gitignore file that's useful for EECS 485 projects.

...

1

2

3

4

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$ wget https://eecs485staff.github.io/p2-insta485-

serverside/starter_files.tar.gz

$ tar -xvzf starter_files.tar.gz

1

2

3

4

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$ mv starter_files/* .

$ rm -rf starter_files starter_files.tar.gz

1

2

3

4

5

6

7

8

9

10

11

$ tree -I 'env|__pycache__|*.egg-info'

.

├── requirements.txt

├── pyproject.toml

├── sql

│ └── uploads

 ...

│ └── e1a7c5c32973862ee15173b0259e3efdb6a391af.jpg

└── tests

 └── util.py

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 4/32

Before making any changes to the clean starter files, it’s a good idea to make a commit to your Git
repository.

Fresh install

These instructions are useful for a group member who wants to check out a fresh copy of the code.

Check out a fresh copy of the code in the directory that you store all of your EECS485 projects. Note
that cloning the repository will create a new directory for your project.

You can now continue with the next sections.

Python virtual environment

Each group member should create a Python virtual environment inside of the project directory using
the Project 1 Python Virtual Environment Tutorial.

You should now have Python tools and third party packages installed locally. Your versions and
exact libraries might be different.

Install utilities

All group members need to install these utilities.

Linux and Windows Subsystem for Linux

1

2

$ git clone <your git URL here>

$ cd p2-insta485-serverside/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$ ls

env

$ source env/bin/activate

$ which python

/Users/awdeorio/src/eecs485/p2-insta485-serverside/env/bin/python

$ which pip

/Users/awdeorio/src/eecs485/p2-insta485-serverside/env/bin/pip

$ pip list

Package Version

------------------ ---------

astroid 2.4.2

...

zipp 3.1.0

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 5/32

https://eecs485staff.github.io/p1-insta485-static/setup_virtual_env.html

MacOS

Database

If you’re new to SQL, take a look at the w3Schools SQL Intro.

Start by completing the SQLite Tutorial. After the tutorial, you should have the sqlite3 command

line utility installed. Your version might be different.

You should have these files.

insta485db script

As part of the SQLite Tutorial Database management shell script section, you should have written
insta485db .

Your script should work like this example. Your output might be slightly different, but it should create
the same files.

$ sudo apt-get install sqlite3 curl

$ brew install sqlite3 curl

1

2

$ sqlite3 --version

3.29.0 2019-07-10 17:32:03

fc82b73eaac8b36950e527f12c4b5dc1e147e6f4ad2217ae43ad82882a88bfa6

1

2

3

4

5

6

7

8

9

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$ tree sql

sql

├── data.sql

├── schema.sql

└── uploads

 ...

 └── e1a7c5c32973862ee15173b0259e3efdb6a391af.jpg

1

2

3

4

5

6

7

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$./bin/insta485db reset

+ rm -rf var/insta485.sqlite3 var/uploads

+ mkdir -p var/uploads

+ sqlite3 var/insta485.sqlite3 < sql/schema.sql

+ sqlite3 var/insta485.sqlite3 < sql/data.sql

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 6/32

https://www.w3schools.com/sql/
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_sqlite.html
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_sqlite.html#database-management-shell-script

Schema

Update schema.sql , which will create 5 tables: users , posts , following , comments and

likes . The following list describes the tables and columns

users table
username , at most 20 chars, primary key

fullname , at most 40 chars

email , at most 40 chars

filename , at most 64 chars

password , at most 256 chars,

created , DATETIME type, automatically set by SQL engine to current date/time.

posts table
postid , integer, primary key, automatically incremented with AUTOINCREMENT

filename , at most 64 chars

owner , at most 20 chars, foreign key to users .

created , DATETIME type, automatically set by SQL engine to current date/time.

Rows in the posts table should be removed automatically when the owner is deleted.

following table

username1 , at most 20 chars, foreign key to users .

username2 , at most 20 chars, foreign key to users .

The tuple (username1 , username2) form a primary key

created , DATETIME type, automatically set by SQL engine to current date/time.

Rows in the following table should be removed automatically when a user
corresponding to username1 or username2 is deleted.

The following relation is username1 follows username2 .

comments table

commentid , integer, primary key, automatically incremented with AUTOINCREMENT

owner , at most 20 chars, foreign key to users table

postid , integer, foreign key to posts table

8

9

10

11

12

13

14

+ cp sql/uploads/* var/uploads/

$ tree var

var

├── insta485.sqlite3

└── uploads

 ...

 └── e1a7c5c32973862ee15173b0259e3efdb6a391af.jpg

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 7/32

https://sqlite.org/autoinc.html
https://sqlite.org/autoinc.html

text , at most 1024 chars

created , DATETIME type, automatically set by SQL engine to current date/time.

Rows in the comments table should be removed automatically when a user corresponding
to owner or a post corresponding to postid is deleted.

likes table
likeid , integer, primary key, automatically incremented with AUTOINCREMENT

owner , at most 20 chars, foreign key to users

postid , integer, foreign key to posts

created , DATETIME type, automatically set by SQL engine to current date/time.

Rows in the likes table should be removed automatically when a user corresponding to
owner or a post corresponding to postid is deleted.

Data

Update sql/data.sql to add all initial data. You can find a complete dump of the initial data in

insta485db-dump.txt. Your timestamps will be different. The password for awdeorio is chickens

and rest of the given users is password .

Testing

Install the libraries needed to run the database tests.

Run the public autograder testcases on your database schema and data.

 Pro-tip: Every column outlined above is required for the insta485 database (see NOT NULL

). PRIMARY KEY and DEFAULT attributes automatically imply the NOT NULL constraint.

 Pro-tip: Use ON DELETE CASCADE to automatically remove data from a table when
corresponding data from another table is deleted. This applies to the likes table, comments

table, following table and posts table.

1

2

$ source env/bin/activate # Make sure virtual environment is activated

$ pip install pytest

1

2

3

$ pytest -v tests/db_tests

...

========================== 2 passed in 1.76 seconds

===========================

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 8/32

https://sqlite.org/autoinc.html
file:///p2-insta485-serverside/insta485db-dump.txt
https://www.sqlitetutorial.net/sqlite-not-null-constraint/

Make sure these tests pass before moving on. The other unit tests rely on a fully functionally
bin/insta485db script.

You should now submit your work to the autograder. Ignore errors about files that don’t exist when
making the tarball.

Server-side Insta485

This project includes the same pages as project 1. The pages also include buttons to follow,
unfollow, like, unlike and comment. We’ll also add pages for user account administration.

List of URLs from project 1. Keep these URLs in project 2.

/ screenshot

/users/<user_url_slug>/ screenshot1 screenshot2

/users/<user_url_slug>/followers/ screenshot

/users/<user_url_slug>/following/ screenshot

/posts/<postid_url_slug>/ screenshot1 screenshot2

/explore/ screenshot

List of new URLs in project 2.

/accounts/?target=URL Immediate redirect. No screenshot.

/accounts/login/ screenshot (no user logged in)

/accounts/logout/ Immediate redirect. No screenshot.

/accounts/create/ screenshot (no user logged in)

/accounts/delete/ screenshot

/accounts/edit/ screenshot

/accounts/password/ screenshot

/accounts/auth/ Empty response. No screenshot.

/uploads/<filename> Serve image. No screenshot.

/likes/?target=URL Immediate redirect. No screenshot.

/comments/?target=URL Immediate redirect. No screenshot.

/posts/?target=URL Immediate redirect. No screenshot.

/following/?target=URL Immediate redirect. No screenshot.

Setup

Complete the Flask Tutorial if you have not already.

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 9/32

file:///p2-insta485-serverside/images/screenshot-index.png
file:///p2-insta485-serverside/images/screenshot-u-awdeorio.png
file:///p2-insta485-serverside/images/screenshot-u-jflinn.png
file:///p2-insta485-serverside/images/screenshot-u-awdeorio-followers.png
file:///p2-insta485-serverside/images/screenshot-u-awdeorio-following.png
file:///p2-insta485-serverside/images/screenshot-p-1.png
file:///p2-insta485-serverside/images/screenshot-p-2.png
file:///p2-insta485-serverside/images/screenshot-explore.png
file:///p2-insta485-serverside/images/screenshot-accounts-login.png
file:///p2-insta485-serverside/images/screenshot-accounts-create.png
file:///p2-insta485-serverside/images/screenshot-accounts-delete.png
file:///p2-insta485-serverside/images/screenshot-accounts-edit.png
file:///p2-insta485-serverside/images/screenshot-accounts-password.png
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_flask.html

You should now have a directory containing an insta485 Python module.

insta485run script

The insta485run script starts a development server and you can browse to http://localhost:8000/

where you’ll see your “hello world” app. The Flask Tutorial Run Script section describes this script.

All pages

Include a link to the main page / .

If logged in, include a link to /explore/ .

If logged in, include a link to /users/<user_url_slug>/ where user_url_slug is the logged in
user.

You don’t need to worry about being logged in at first if you don’t want to: You can run some tests
with authentication disabled. However, after login is implemented, every page should automatically
redirect the user to the login page /accounts/login/ if they aren’t logged in (unless they’re
already on the login page or the create account page).

Index GET /

screenshot

1

2

3

4

5

6

7

8

9

10

11

12

13

$ tree insta485 -I '__pycache__'

insta485

├── __init__.py

├── config.py

├── model.py

├── static

│ └── css

│ │ └── style.css

├── templates

│ └── index.html

└── views

 ├── __init__.py

 └── index.py

$./bin/insta485run

 Pro-tip: When linking to pages or static files look into flask’s url_for() function.

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 10/32

http://localhost:8000/
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_flask.html#run-script
file:///p2-insta485-serverside/images/screenshot-index.png

The index page should include all posts from the logged in user and all other users that the logged
in user is following. The most recent post should be at the top. For each post:

Link to the post detail page /posts/<postid_url_slug>/ by clicking on the timestamp.

Link to the owner’s page /users/<user_url_slug>/ by clicking on their username or profile

picture.

Time since the post was created in human-readable format using the humanize function in the
arrow package.

Number of likes, using correct English

Comments, with owner’s username, oldest at the top
Link to the comment owner’s page /users/<user_url_slug>/ by clicking on their
username.

“like” or “unlike” button, pick the logical one

Comment input and submission button

To get started, hardcode the logged in user to be awdeorio . Later when you implement login, read
the username of the logged in user from the session cookie.

Form for “like” button

Form for “unlike” button

 Pitfall: Returning the most recent posts can be tricky because database initialization
creates many posts at nearly the same instant. Thus, ordering by timestamp can result in ties.
Instead, use the fact that post ID is incremented automatically if set up properly in your
schema.

 The form below makes a POST request to /likes/?target=URL , which you will implement

later. For the rest of the forms, there are corresponding POST routes also mentioned later in
the spec.

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_LIKES_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="hidden" name="operation" value="like"/>

 <input type="hidden" name="postid" value="<FIXME_POST_ID_HERE>"/>

 <input type="submit" name="like" value="like"/>

</form>

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 11/32

https://arrow.readthedocs.io/

Form for “comment” button

Run the unit tests for the index page. The --noauth flag skips user login. Remove the --noauth

flag after login is implemented.

GET /uploads/<filename>

A user with the direct link to an uploaded file, /uploads/<filename> , should only be able to see

that file if logged in.

Do the following once login is implemented.

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_LIKES_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="hidden" name="operation" value="unlike"/>

 <input type="hidden" name="postid" value="<FIXME_POST_ID_HERE>"/>

 <input type="submit" name="unlike" value="unlike"/>

</form>

1

2

3

4

5

6

7

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_COMMENTS_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="hidden" name="operation" value="create"/>

 <input type="hidden" name="postid" value="<FIXME_POST_ID_HERE>"/>

 <input type="text" name="text" required/>

 <input type="submit" name="comment" value="comment"/>

</form>

$ pytest -v --noauth tests/app_tests/test_index.py

 When running the testcases, you would see the following DeprecationWarning . This

warning is expected and will not impact your score on the autograder. The arrow package is
using a deprecated function in its current release.

1

2

3

4

5

.../env/lib/python3.12/site-packages/arrow/arrow.py:1150:

DeprecationWarning: datetime.datetime.utcnow() is deprecated and scheduled

for removal in a future version. Use

timezone-aware objects to represent datetimes in UTC:

datetime.datetime.now(datetime.UTC).

 utc = dt_datetime.utcnow().replace(tzinfo=dateutil_tz.tzutc())

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 12/32

If an unauthenticated user attempts to access an uploaded file, abort(403) , regardless of whether
the file exists.

If an authenticated user attempts to access a file that does not exist, abort(404) .

GET /users/<user_url_slug>/

screenshot1 screenshot2 screenshot3

Be sure to include

username (user_url_slug)

Relationship
“following” if the logged in user is following user_url_slug . Also include an “unfollow”
button.

“not following” if the logged in user is not following user_url_slug . Also include a “follow”
button.

Blank if logged in user == user_url_slug

Number of posts, with correct English

Number of followers, with correct English
Link to /users/<user_url_slug>/followers/

Number following
Link to /users/<user_url_slug>/following/

Name

A small image for each post
Clicking on the image links to /posts/<postid_url_slug>/

If the user has 0 posts, display “No posts yet.”

For a user’s own page, also include

Link to /accounts/edit/

HTML form that POSTs to /accounts/logout/

File upload form for creating a new post that POSTS to /posts/

If someone tries to access a user_url_slug that does not exist in the database, then

abort(404) .

 Pro-tip: In order to serve images correctly, look into flask’s send_from_directory()

function.

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 13/32

file:///p2-insta485-serverside/images/screenshot-u-awdeorio.png
file:///p2-insta485-serverside/images/screenshot-u-jflinn.png
file:///p2-insta485-serverside/images/screenshot-u-michjc.png

Form for follow button

Form for unfollow button

Form for logout

Form for file upload

Run a unit test for the user page.

GET /users/<user_url_slug>/followers/

screenshot

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_FOLLOWING_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="submit" name="follow" value="follow"/>

 <input type="hidden" name="username" value="<FIXME_USERNAME_HERE>"/>

 <input type="hidden" name="operation" value="follow"/>

</form>

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_FOLLOWING_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="submit" name="unfollow" value="unfollow"/>

 <input type="hidden" name="username" value="<FIXME_USERNAME_HERE>"/>

 <input type="hidden" name="operation" value="unfollow"/>

</form>

1

2

3

4

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_LOGOUT_PAGE_URL_HERE>" method="post"

enctype="multipart/form-data">

 <input type="submit" name="logout" value="Logout"/>

</form>

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_POSTS_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="file" name="file" accept="image/*" required/>

 <input type="submit" name="create_post" value="upload new post"/>

 <input type="hidden" name="operation" value="create"/>

</form>

$ pytest -v --noauth tests/app_tests/test_user_public.py::test_awdeorio

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 14/32

file:///p2-insta485-serverside/images/screenshot-u-awdeorio-followers.png

List the users that are following user_url_slug . For each, include:

Icon

Username, with link to /users/<username>/

Relationship to logged in user
“following” if logged in user is following username. Also, an “unfollow” button. See above for
HTML form.

“not following” if logged in user is not following username. Also, a “follow” button. See
above for HTML form.

Blank if logged in user == username

If someone tries to access a user_url_slug that does not exist in the database, then
abort(404) .

Run a unit test for the followers page.

GET /users/<user_url_slug>/following/

screenshot

List the users that user_url_slug is following. For each, include:

Icon

Username, with link to /users/<username>/

Relationship to logged in user
“following” if logged in user is following username. Also, an “unfollow” button. See above for
HTML form.

“not following” if logged in user is not following username. Also, a “follow” button. See
above for HTML form.

Blank if logged in user == username

If someone tries to access a user_url_slug that does not exist in the database, then

abort(404) .

Run a unit test for the following page.

GET /posts/<postid_url_slug>/

$ pytest -v --noauth

tests/app_tests/test_followers_public.py::test_awdeorio_followers

$ pytest -v --noauth tests/app_tests/test_following.py::test_awdeorio

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 15/32

file:///p2-insta485-serverside/images/screenshot-u-awdeorio-following.png

screenshot1 screenshot2

This page shows one post. Include the same information for this one post as is shown on the main
page / .

Include a “delete” button next to each comment owned by the logged in user.

Include a “delete this post” button if the post is owned by the logged in user.`

Run unit tests for the post page.

GET /explore/

screenshot

This page lists all users that the logged in user is not following and includes:

Icon

Username with link to /users/<user_url_slug>/

“follow” button
See above for HTML form

Run unit tests for the explore page.

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_COMMENTS_URL_HERE>?target=<FIXME_CURRENT_PAGE_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="hidden" name="operation" value="delete"/>

 <input type="hidden" name="commentid" value="<FIXME_COMMENT_ID_HERE>"/>

 <input type="submit" name="uncomment" value="delete"/>

</form>

1

2

3

4

5

6

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_POSTS_URL_HERE>?target=

<FIXME_LOGGED_IN_USER_PAGE_URL_HERE>" method="post" enctype="multipart/form-

data">

 <input type="hidden" name="operation" value="delete"/>

 <input type="hidden" name="postid" value="<FIXME_POST_ID_HERE>"/>

 <input type="submit" name="delete" value="delete this post"/>

</form>

1

2

$ pytest -v --noauth tests/app_tests/test_post_public.py::test_postid_1 \

 tests/app_tests/test_post_public.py::test_postid_2

$ pytest -v --noauth tests/app_tests/test_explore.py::test_awdeorio_default

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 16/32

file:///p2-insta485-serverside/images/screenshot-p-1.png
file:///p2-insta485-serverside/images/screenshot-p-2.png
file:///p2-insta485-serverside/images/screenshot-explore.png

GET /accounts/login/

screenshot

If logged in, redirect to / .

Otherwise, include username and password inputs and a login button.

Also include a link to /accounts/create/ in the page.

Use this HTML form code. Feel free to style it and include placeholder s.

Run a unit test for the login page.

GET /accounts/create/

screenshot

If a user is already logged in, redirect to /accounts/edit/ .

Also include two links to /accounts/login/ in the page, one in the top Navigation section and one
after the sign up button.

HTML form. Style as you like.

1

2

3

4

5

6

7

<!-- DO NOT CHANGE THIS (aside from styling) -->

<form action="<FIXME_ACCOUNTS_URL_HERE>?target=<FIXME_INDEX_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="text" name="username" required/>

 <input type="password" name="password" required/>

 <input type="submit" value="login"/>

 <input type="hidden" name="operation" value="login"/>

</form>

$ pytest -v tests/app_tests/test_login_logout.py::test_login_page_content

1

2

3

4

5

6

7

8

9

<!-- DO NOT CHANGE THIS (aside from styling) -->

<form action="<FIXME_ACCOUNTS_URL_HERE>?target=<FIXME_INDEX_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="file" name="file" required/>

 <input type="text" name="fullname" required/>

 <input type="text" name="username" required/>

 <input type="text" name="email" required/>

 <input type="password" name="password" required/>

 <input type="submit" name="signup" value="sign up"/>

 <input type="hidden" name="operation" value="create"/>

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 17/32

file:///p2-insta485-serverside/images/screenshot-accounts-login.png
file:///p2-insta485-serverside/images/screenshot-accounts-create.png

GET /accounts/delete/

screenshot

Confirmation page includes username and this form:

GET /accounts/edit/

screenshot

Include user’s current photo and username. Include a form with photo upload, name and email.
Name and email are automatically filled in with previous value. Username can not be edited.

Link to /accounts/password/ .

Link to /accounts/delete/ .

Use this form:

GET /accounts/password/

screenshot

Include this form:

10 </form>

1

2

3

4

5

<!-- DO NOT CHANGE THIS -->

<form action="<FIXME_ACCOUNTS_URL_HERE>?target=<FIXME_ACCOUNTS_CREATE_HERE>"

method="post" enctype="multipart/form-data">

 <input type="submit" name="delete" value="confirm delete account"/>

 <input type="hidden" name="operation" value="delete"/>

</form>

1

2

3

4

5

6

7

8

<!-- DO NOT CHANGE THIS (aside from where we say 'FIXME') -->

<form action="<FIXME_ACCOUNTS_URL_HERE>?target=<FIXME_CURRENT_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="file" name="file" accept="image/*"/>

 <input type="text" name="fullname" value="<FIXME_FULL_NAME_HERE>" required/>

 <input type="text" name="email" value="<FIXME_EMAIL_HERE>" required/>

 <input type="submit" name="update" value="submit"/>

 <input type="hidden" name="operation" value="edit_account"/>

</form>

1 <!-- DO NOT CHANGE THIS -->

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 18/32

file:///p2-insta485-serverside/images/screenshot-accounts-delete.png
file:///p2-insta485-serverside/images/screenshot-accounts-edit.png
file:///p2-insta485-serverside/images/screenshot-accounts-password.png

Link to /accounts/edit/ .

GET /accounts/auth/

Return a 200 status code with no content (i.e. an empty response) if the user is logged in.

abort(403) if the user is not logged in. This route is only used when you deploy the app to AWS.

POST /likes/?target=URL

This endpoint only accepts POST requests. Create or delete a like and immediately redirect to URL .

Setup

To get started, add a function stub for the /likes/ route to one of the Python files in your views

module. Also make sure you have logging set up at the top of the file.

Make sure your server is running.

Click the first unlike button on awdeorio ’s feed. Requests to this endpoint are made by the form for
“like” or “unlike” button on the index page.

2

3

4

5

6

7

8

<form action="<FIXME_ACCOUNTS_URL_HERE>?target=<FIXME_EDIT_ACCOUNT_URL_HERE>"

method="post" enctype="multipart/form-data">

 <input type="password" name="password" required/>

 <input type="password" name="new_password1" required/>

 <input type="password" name="new_password2" required/>

 <input type="submit" name="update_password" value="submit"/>

 <input type="hidden" name="operation" value="update_password"/>

</form>

1

2

3

4

5

6

7

8

9

LOGGER = flask.logging.create_logger(insta485.app)

@insta485.app.route("/likes/", methods=["POST"])

def update_likes():

 LOGGER.debug("operation = %s", flask.request.form["operation"])

 LOGGER.debug("postid = %s", flask.request.form["postid"])

 # TODO: Update the database

 # TODO: Redirect the client with flask.redirect()

 # PITFALL: Do not call render_template()

$./bin/insta485run

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 19/32

You should see the logs from update_likes() in the terminal.

Specification

Use the operation and postid values from the POST request form content.

If operation is like , create a like for postid . If operation is unlike , delete a like for

postid .

Then, redirect to URL . If the value of ?target is not set, redirect to / .

If someone tries to like a post they have already liked or unlike a post they have not liked, then

abort(409)

1

2

3

[2024-09-04 12:42:09,897] DEBUG in likes: operation = unlike

[2024-09-04 12:42:09,897] DEBUG in likes: postid = 3

127.0.0.1 - - [04/Sep/2024 12:42:09] "POST /likes/ HTTP/1.1" 302 -

 Pro-tip: Any additional arguments passed to the url_for() function are appended to the URL
as query parameters.

1 >>> flask.url_for("my_function", my_key="my_value")

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 20/32

https://flask.palletsprojects.com/en/1.1.x/api/#flask.url_for

Run a unit test for the likes POST request.

POST /comments/?target=URL

This endpoint only accepts POST requests. Create or delete a comment on a post and immediately
redirect to URL .

Use the operation , postid , commentid and text values from the POST request form content.

If operation is create , then create a new comment on postid with the content text . If

operation is delete , then delete comment with ID commentid .

If a user tries to create an empty comment, then abort(400) . 400 is the HTTP code indicating a
Bad Request.

If a user tries to delete a comment that they do not own, then abort(403) .

If the value of ?target is not set, redirect to / .

Run unit tests for the comments POST request.

POST /posts/?target=URL

This endpoint only accepts POST requests. Create or delete a post and immediately redirect to

URL .

Use the operation and postid values from the POST response form content.

If operation is create , save the image file to disk and redirect to URL .

If a user tries to create a post with an empty file, then abort(400) .

If operation is delete , delete the image file for postid from the filesystem. Delete everything in

the database related to this post. Redirect to URL .

If the value of ?target is not set, redirect to /users/<logname>/ .

You can also use url_for() in a jinja2 template HTML file.

2 /my_endpoint?my_key=my_value

$ pytest -v --noauth tests/app_tests/test_post_public.py::test_like_unlike

1

2

$ pytest -v --noauth tests/app_tests/test_post_public.py::test_comment \

 tests/app_tests/test_post_public.py::test_delete_comment

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 21/32

If a user tries to delete a post that they do not own, then abort(403) .

UUID filenames

Use a universally unique identifier (UUID) for the filename when creating a post. A few reasons for
UUID filenames are

1. Avoid two uploads with the same name overwriting each other,

2. Avoid filenames with characters that the filesystem doesn’t support.

Here’s how to compute filenames in your Flask app:

For example, if you upload the file awdeorio.JPG , the computed filename for this file would look

something like fa0869c36f504c3fafd21d428185b387.jpg . Since UUID’s are generated randomly,
your UUID will be different. Notice the lowercase file extension.

Run unit tests for the posts POST request.

POST /following/?target=URL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import pathlib

import uuid

import insta485

Unpack flask object

fileobj = flask.request.files["file"]

filename = fileobj.filename

Compute base name (filename without directory). We use a UUID to avoid

clashes with existing files, and ensure that the name is compatible with the

filesystem. For best practive, we ensure uniform file extensions (e.g.

lowercase).

stem = uuid.uuid4().hex

suffix = pathlib.Path(filename).suffix.lower()

uuid_basename = f"{stem}{suffix}"

Save to disk

path = insta485.app.config["UPLOAD_FOLDER"]/uuid_basename

fileobj.save(path)

1

2

$ pytest -v --noauth tests/app_tests/test_user_public.py::test_upload \

 tests/app_tests/test_post_public.py::test_delete_post

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 22/32

This endpoint only accepts POST requests. Follows or unfollows a user and immediately redirect to

URL .

Use the operation and username values from the POST request form content.

If operation is follow , then make user logname follow user username .

If operation is unfollow , then make user logname unfollow user username .

If a user tries to follow a user that they already follow or unfollow a user that they do not follow, then
abort(409) .

If the value of ?target is not set, redirect to / .

Run unit tests for the following POST request.

POST /accounts/logout/

This endpoint only accepts POST requests.

Log out user. Immediately redirect to /accounts/login/ .

POST /accounts/?target=URL

This endpoint only accepts POST requests. Perform various account operations and immediately
redirect to URL .

Use the operation value from the POST request form content to determine the type of action to
take.

If the value of ?target is not set, redirect to / .

Operation: login

Use username and password from the POST request form content to log the user in.

If the username or password fields are empty, abort(400) .

If username and password authentication fails, abort(403) .

Set a session cookie. Reminder: only store minimal information in a session cookie!

$ pytest -v --noauth tests/app_tests/test_follow_unfollow.py

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 23/32

Redirect to URL .

Run a unit test for operation: login .

Operation: create

Use username , password , fullname , email and file from the POST request form content to

create the user. See above for file upload and naming procedure.

If any of the above fields are empty, abort(400) .

If a user tries to create an account with an existing username in the database, abort(409) . 409 is
the HTTP code indicating a Conflict Error.

Log the user in and redirect to URL .

Password storage

A password entry in the database contains the algorithm, salt and password hash separated by $.

Use the sha512 algorithm like this:

Compute hashed password using SHA-512

Run a unit test for operation: create .

Operation: delete

 Flask implements sessions. Look at the Flask docs for a usage example. Note that you
should have already set up the secret key in the insta485/config.py file.

$ pytest -v tests/app_tests/test_login_logout.py::test_login

1

2

3

4

5

6

7

8

9

10

import uuid

import hashlib

algorithm = 'sha512'

salt = uuid.uuid4().hex

hash_obj = hashlib.new(algorithm)

password_salted = salt + password

hash_obj.update(password_salted.encode('utf-8'))

password_hash = hash_obj.hexdigest()

password_db_string = "$".join([algorithm, salt, password_hash])

print(password_db_string)

$ pytest -v tests/app_tests/test_accounts_public.py::test_accounts_create

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 24/32

https://flask.palletsprojects.com/en/3.0.x/quickstart/#sessions
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_flask.html#config

If the user is not logged in, abort(403) .

Delete all post files created by this user. Delete user icon file. Delete all related entries in all tables.

Upon successful submission, clear the user’s session, and redirect to URL .

Run a unit test for operation: delete .

Operation: edit_account

If the user is not logged in, abort(403) .

Use fullname , email and file from the POST request form content to edit the user account.

If the fullname or email fields are empty, abort(400) .

If no photo file is included, update only the user’s name and email.

If a photo file is included, then the server will update the user’s photo, name and email. Delete the
old photo from the filesystem. See above for file upload and naming procedure.

Upon successful submission, redirect to URL .

Run a unit test for operation: edit_account .

Operation: update_password

If the user is not logged in, abort(403) .

Use password , new_password1 and new_password2 from the POST request form content to

update the user’s password.

If any of the above fields are empty, abort(400) .

Verify password against the user’s password hash in the database. If verification fails,

abort(403) .

Verify both new passwords match. If verification fails, abort(401) .

 Pro-tip: Set up database tables properly with primary/foreign key relationships and ON
DELETE CASCADE will do this automatically.

$ pytest -v tests/app_tests/test_accounts_public.py::test_accounts_delete

$ pytest -v tests/app_tests/test_accounts_public.py::test_accounts_edit

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 25/32

Update hashed password entry in database. See above for the password storage procedure.

Redirect to URL .

Run a unit test for operation: update_password .

All pages

Run unit tests for a different logged in user, michjc . This should help you sanity check that you’ve

removed all hardcoded instances of awdeorio as the logged in user.

Run a unit test for SQL injection attack.

Access control

The server should reject POST requests to delete entities not owned by the logged in user. For
example, only the logged in user should be able to delete their own posts and comments. To reject a
request with a permissions error, use flask.abort(403) . Users should be able to comment and

like posts of users that they are not following.

The following examples assume you have a (mostly) working Insta485 project with a freshly reset
database.

Using curl

Curl is a command line tool for making HTTP requests. You can make the same requests that
browser would make from the CLI.

Use curl to log in to Insta485. This command issues a POST request to /accounts/ with a
username and password. The -F KEY=VALUE sends a key-value pair just like a web form. The --

cookie-jar cookies.txt will save the cookies set by the website to the file cookies.txt .

$ pytest -v tests/app_tests/test_accounts_public.py::test_accounts_password

 Now that login is implemented, head back to the pages with hardcoded logged in user
awdeorio and read the username of the logged in user from the session cookie instead. Make

sure that every page automatically redirects the user to the login page if they’re not logged in
(unless they’re already on the login page or create account page.)

$ pytest -v tests/app_tests/test_michjc.py

$ pytest -v tests/app_tests/test_login_logout.py::test_sql_injection

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 26/32

View the index / page by issuing a GET request, sending the cookies set by the previous login (-

-cookie cookies.txt).

Delete a post by issuing a POST request.

Malicious example

Even though the “Delete post” button is hidden on posts that the logged in user doesn’t own, any
user can use a tool like curl to send a POST request to try to delete an Insta485 post.

Try to delete a post created by jflinn using awdeorio ’s cookies. We get a 403 Forbidden error.
This is a good thing!

A 403 Forbidden error should also be returned when a malicious user attempts to delete another
person’s comment.

Testing

1

2

3

4

5

$ curl -X POST http://localhost:8000/accounts/ \

 -F username=awdeorio \

 -F password=password \

 -F operation=login \

 --cookie-jar cookies.txt

 Always use HTTPS for user login pages. Never use HTTP, which transfers a password in
plaintext where a network eavesdropper could read it. For simplicity, this project uses HTTP
only.

1

2

$ curl --cookie cookies.txt http://localhost:8000/

... <index.html page content here>

1

2

3

4

$ curl -X POST http://localhost:8000/posts/ \

 -F postid=1 \

 -F operation=delete \

 --cookie cookies.txt

1

2

3

4

5

6

7

$ curl -X POST http://localhost:8000/posts/ \

 -F postid=2 \

 -F operation=delete \

 --cookie cookies.txt

...

<title>403 Forbidden</title>

...

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 27/32

This section will show how to run style and unit tests.

Code style

All Python code must be PEP8 compliant, comments must be PEP257 compliant, and code must
pass a pylint static analysis.

Compliant HTML

Automatically generated HTML must be W3C HTML5 compliant. To test dynamically generated
pages, the test_style.py::test_html test case renders each page and saves it to a file. Then, it

runs html5validator on the files.

Unit tests

Run the app unit tests. Everything should pass except for the deploy test and some of the script
tests.

insta485test script

Write another script called bin/insta485test that does this:

1. Stop on errors and prints commands

2. Run pycodestyle insta485

3. Run pydocstyle insta485

4. Run pylint insta485

5. Run all unit tests using pytest -v tests

Don’t forget to check for shell script pitfalls.

1

2

3

$ pycodestyle insta485

$ pydocstyle insta485

$ pylint insta485

$ pytest -vvs tests/app_tests/test_style.py::test_html

$ pytest -v tests/app_tests

1

2

3

4

$ file bin/*

bin/insta485db: Bourne-Again shell script text executable, ASCII text

bin/insta485run: Bourne-Again shell script text executable, ASCII text

bin/insta485test: Bourne-Again shell script text executable, ASCII text

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 28/32

https://eecs485staff.github.io/p1-insta485-static/setup_scripting.html#shell-script-pitfalls

You should now submit your work to the autograder. Ignore errors about files that don’t exist when
making the tarball.

Deploy to AWS

You should have already created an AWS account and instance (instructions). Resume the AWS
Tutorial with Install Nginx and Install Flask App.

After you have deployed your site, download the main page along with a log. Do this from your local
development machine, not while SSH’d into your EC2 instance.

Be sure to verify that the output in deployed_insta485.log doesn’t include errors like “Couldn’t

connect to server”. If it does contain an error like this, it means curl couldn’t successfully connect
with your flask app. Also be sure to check that the curl command points to your AWS instance URL
and not to localhost.

Be sure to verify that the output in deployed_insta485.html looks like a successfully rendered
login page and does not contain any errors.

Shutting down AWS instance

Be sure to shut down your instance when you’re done with it (Stop EC2 Instance Instructions).

Submitting and grading

One team member should register your group on the autograder using the create new invitation
feature.

Submit a tarball to the autograder, which is linked from https://eecs485.org. Include the --disable-
copyfile flag only on macOS.

1

2

3

4

5

$ pwd

/Users/awdeorio/src/eecs485/p2-insta485-serverside

$ hostname

awdeorio-laptop # NOT AWS

$ curl -v <Public DNS (IPv4)>/accounts/login/ > deployed_insta485.html 2>

deployed_insta485.log

1

2

3

4

5

$ tar \

 --disable-copyfile \

 --exclude '*__pycache__*' \

 -czvf submit.tar.gz \

 bin \

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 29/32

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_aws.html#create-aws-account
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_aws.html#install-nginx
file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/setup_aws.html#install-flask-app
https://eecs485staff.github.io/p2-insta485-serverside/setup_aws.html#stop-ec2-instance
https://eecs485.org/

The autograder will run pip install -e YOUR_SOLUTION . The exact library versions in the

requirements.txt provided with the starter files is cached on the autograder, so be sure not to

add extra library dependencies to requirements.txt or pyproject.toml .

Direct link to the F24 Project 2 autograder: https://autograder.io/web/project/2540.

Rubric

This is an approximate rubric.

Deliverable Value

Handcoded SQL 10%

Python and HTML style 10%

Scripts 10%

insta485 (public) 30%

insta485 (private) 35%

AWS deployment 5%

Things we won’t test

The autograder focuses on the functionality of your solution. These are some specific optional
aspects of the project that we won’t evaluate.

CSS styling

Labeled form inputs, e.g., <p>Name: <input type="text" name="fullname"/></p>

User-submitted data validation not mentioned in this spec. For example, a password that
contains only whitespace.

Situations not mentioned in this spec. Make any decision that you might reasonable expect on a
real website. However, use flask.abort() only for errors.

FAQ

6

7

8

9

 insta485 \

 sql \

 deployed_insta485.html \

 deployed_insta485.log

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 30/32

https://autograder.io/web/project/2540

Do trailing slashes in URLs matter?

Yes. Use them everywhere. See the “Unique URLs / Redirection Behavior” section in the Flask
quickstart.

Static files (like .jpg) should not have a trailing slash at the end. Use trailing slashes everywhere
else.

Should I change HTML forms?

You can add HTML to style forms any way you choose. Don’t change the number, type or names of
the inputs. This is because the autograder will make POST requests.

How should I link to my routes in HTML?

Use the flask.url_for function. Read documentation about this function online.

Can I disable any code style checks?

Do not disable any code style check from any code style tool (pycodestyle , pydocstyle ,

pylint). There are two exceptions listed here.

In insta485/__init__.py , the Flask framework requires an import at the bottom of the file

(reference). We’re going to tell pylint and pycodestyle to ignore this coding style violation.

In insta485/__init__.py , the Flask framework uses an object that is used throughout the module.
Although its value never changes, it is not a constant in the classic sense. We’re going to tell pylint
to ignore this coding style violation.

Why do I keep getting 404 Not Found?

A common reason to get 404 Not Found errors is if you forget to include the routes in your solution’s
insta485/views/__init__.py file. Here’s a snippet of the instructor solution.

1

2

import insta485.views # noqa: E402 pylint: disable=wrong-import-position

import insta485.model # noqa: E402 pylint: disable=wrong-import-position

app = flask.Flask(__name__) # pylint: disable=invalid-name

1

2

3

from insta485.views.index import show_index

from insta485.views.user import show_user

...

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 31/32

https://flask.palletsprojects.com/en/3.0.x/quickstart/#unique-urls-redirection-behavior
https://flask.palletsprojects.com/en/3.0.x/quickstart/#unique-urls-redirection-behavior
http://flask.pocoo.org/docs/patterns/packages/

Acknowledgments

Original document written by Andrew DeOrio awdeorio@umich.edu.

This document is licensed under a Creative Commons Attribution-NonCommercial 4.0 License.
You’re free to copy and share this document, but not to sell it. You may not share source code
provided with this document.

12/12/24, 3:27 PM p2-insta485-serverside

file:///home/runner/work/p2-insta485-serverside/p2-insta485-serverside/_site/index.html 32/32

mailto:awdeorio@umich.edu
https://creativecommons.org/licenses/by-nc/4.0/

